Skip to main content

Artificial Intelligence-Based Diagnosis and Procedural Planning for Aortic Valve Disease

  • Chapter
  • First Online:
Artificial Intelligence in Cardiothoracic Imaging

Part of the book series: Contemporary Medical Imaging ((CMI))

  • 1691 Accesses

Abstract

Aortic valve diseases, specifically aortic valve stenosis and regurgitation, are common conditions encountered in clinical cardiology practice. The emergence of transcatheter aortic valve replacement (TAVR) has resulted in a renewed interest in the diagnosis and management of these conditions. Artificial intelligence (AI) has the ability to assist with all components of the patient journey, from initial diagnosis, medical imaging, and planning of TAVR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nathaniel S, Saligram S, Innasimuthu AL. Aortic stenosis: an update. World J Cardiol. 2010;2(6):135–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fedak PW, Verma S, David TE, Leask RL, Weisel RD, Butany J. Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation. 2002;106(8):900–4.

    Article  PubMed  Google Scholar 

  3. Arias EA, Bhan A, Lim ZY, Mullen M. TAVI for pure native aortic regurgitation: are we there yet? Interv Cardiol. 2019;14(1):26–30.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kwon JM, Lee SY, Jeon KH, Lee Y, Kim KH, Park J, et al. Deep learning based algorithm for detecting aortic stenosis using electrocardiography. J Am Heart Assoc. 2020;9(7):e014717.

    Article  PubMed  PubMed Central  Google Scholar 

  5. White BE, Shapiro AM, Kanzawa MM, Venkatraman S, Paek J, Pham S, et al. Abstract 13831: handheld wireless digital phonocardiography for machine learning-based detection of mitral regurgitation. Circulation. 2019;140(Suppl_1):A13831-A.

    Google Scholar 

  6. Gharehbaghi A, Dutoit T, Sepehri AA, Kocharian A, Lindén M. A novel method for screening children with isolated bicuspid aortic valve. Cardiovasc Eng Technol. 2015;6(4):546–56.

    Article  PubMed  Google Scholar 

  7. Ghorbani A, Ouyang D, Abid A, He B, Chen JH, Harrington RA, et al. Deep learning interpretation of echocardiograms. NPJ Digital Med. 2020;3(1):10.

    Article  Google Scholar 

  8. Lessmann N, van Ginneken B, Zreik M, de Jong PA, de Vos BD, Viergever MA, et al. Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions. IEEE Trans Med Imaging. 2018;37(2):615–25.

    Article  PubMed  Google Scholar 

  9. Sun S. An innovative intelligent system based on automatic diagnostic feature extraction for diagnosing heart diseases. Knowledge-Based Syst. 2015;75:224–38.

    Article  Google Scholar 

  10. Bratt A, Kim J, Pollie M, Beecy AN, Tehrani NH, Codella N, et al. Machine learning derived segmentation of phase velocity encoded cardiovascular magnetic resonance for fully automated aortic flow quantification. J Cardiovasc Magn Reson. 2019;21(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Avendi MR, Kheradvar A, Jafarkhani H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal. 2016;30:108–19.

    Article  CAS  PubMed  Google Scholar 

  12. Tao Q, Yan W, Wang Y, Paiman EHM, Shamonin DP, Garg P, et al. Deep learning-based method for fully automatic quantification of left ventricle function from cine MR images: a multivendor. Multicenter Study Radiol. 2019;290(1):81–8.

    Google Scholar 

  13. Fries JA, Varma P, Chen VS, Xiao K, Tejeda H, Saha P, et al. Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences. Nat Commun. 2019;10(1):3111.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Borger MA, Fedak PWM, Stephens EH, Gleason TG, Girdauskas E, Ikonomidis JS, et al. The American Association for Thoracic Surgery consensus guidelines on bicuspid aortic valve-related aortopathy: full online-only version. J Thorac Cardiovasc Surg. 2018;156(2):e41–74.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wojnarski CM, Roselli EE, Idrees JJ, Zhu Y, Carnes TA, Lowry AM, et al. Machine-learning phenotypic classification of bicuspid aortopathy. J Thorac Cardiovasc Surg. 2018;155(2):461–9.e4.

    Article  PubMed  Google Scholar 

  16. Baskaran L, Al'Aref SJ, Maliakal G, Lee BC, Xu Z, Choi JW, et al. Automatic segmentation of multiple cardiovascular structures from cardiac computed tomography angiography images using deep learning. PLoS One. 2020;15(5):e0232573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blanke P, Schoepf UJ, Leipsic JA. CT in transcatheter aortic valve replacement. Radiology. 2013;269(3):650–69.

    Article  PubMed  Google Scholar 

  18. Blanke P, Soon J, Dvir D, Park JK, Naoum C, Kueh SH, et al. Computed tomography assessment for transcatheter aortic valve in valve implantation: the Vancouver approach to predict anatomical risk for coronary obstruction and other considerations. J Cardiovasc Comput Tomogr. 2016;10(6):491–9.

    Article  PubMed  Google Scholar 

  19. Astudillo P, Mortier P, Bosmans J, De Backer O, de Jaegere P, De Beule M, et al. Enabling automated device size selection for transcatheter aortic valve implantation. J Interv Cardiol. 2019;2019:3591314.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lou J, Obuchowski NA, Krishnaswamy A, Popovic Z, Flamm SD, Kapadia SR, et al. Manual, semiautomated, and fully automated measurement of the aortic annulus for planning of transcatheter aortic valve replacement (TAVR/TAVI): analysis of interchangeability. J Cardiovasc Comput Tomogr. 2015;9(1):42–9.

    Article  PubMed  Google Scholar 

  21. Zhang H-M, Dong B. A review on deep learning in medical image reconstruction. J Operations Res Soc China. 2020;8(2):311–40.

    Article  CAS  Google Scholar 

  22. Ippolito D, Riva L, Talei Franzesi C, De Vito A, Cangiotti C, Crespi A, et al. Computed tomography angiography combined with knowledge-based iterative algorithm for transcatheter aortic valve implantation planning: image quality and radiation dose exposure with low-kV and low-contrast-medium protocol. J Comput Assist Tomogr. 2020;44(1):13–9.

    Article  PubMed  Google Scholar 

  23. Hernandez-Suarez DF, Kim Y, Villablanca P, Gupta T, Wiley J, Nieves-Rodriguez BG, et al. Machine learning prediction models for in-hospital mortality after transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2019;12(14):1328–38.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gomes B, Pilz M, Reich C, Leuschner F, Konstandin M, Katus HA, et al. Machine learning-based risk prediction of intrahospital clinical outcomes in patients undergoing TAVI. Clin Res Cardiol. 2021;110:343–56.

    Article  PubMed  Google Scholar 

  25. Abdul Ghffar Y, Osman M, Shrestha S, Shaukat F, Kagiyama N, Alkhouli M, et al. Usefulness of semisupervised machine-learning-based phenogrouping to improve risk assessment for patients undergoing transcatheter aortic valve implantation. Am J Cardiol. 2020;136:122–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Indraratna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Indraratna, P., Leipsic, J. (2022). Artificial Intelligence-Based Diagnosis and Procedural Planning for Aortic Valve Disease. In: De Cecco, C.N., van Assen, M., Leiner, T. (eds) Artificial Intelligence in Cardiothoracic Imaging. Contemporary Medical Imaging. Humana, Cham. https://doi.org/10.1007/978-3-030-92087-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92087-6_29

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-92086-9

  • Online ISBN: 978-3-030-92087-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics