Skip to main content

Magnetic Resonance Fingerprinting: The Role of Artificial Intelligence

  • Chapter
  • First Online:
Artificial Intelligence in Cardiothoracic Imaging

Part of the book series: Contemporary Medical Imaging ((CMI))

Abstract

Cardiovascular magnetic resonance (CMR) imaging is a powerful tool for assessing the function and structure of the heart. An emerging application of CMR is quantitative tissue characterization of the myocardial substrate, which can potentially provide earlier and more sensitive detection of various pathologies than conventional qualitative imaging. Some of the most commonly measured tissue properties are the MRI relaxation time constants T1 and T2. Recently, novel methods including cardiac Magnetic Resonance Fingerprinting (MRF) have been proposed to simultaneously quantify multiple tissue properties during a single rapid acquisition. By combining a fast undersampled data acquisition with dictionary-based pattern matching, cardiac MRF has the potential to streamline CMR exams and provide highly accurate, precise, and reproducible measurements. However, the processes of MRF dictionary generation and pattern matching can be time-consuming and memory-intensive, especially in applications that seek to quantify a large number of tissue properties simultaneously or that require frequent dictionary generation. The combination of deep learning methods with MRF is an emerging research field that may address many of the limitations of dictionary-based MRF and may facilitate the clinical translation of novel cardiac MRF technology. This chapter will begin by providing an overview of conventional methods for CMR tissue parameter mapping before introducing the concept of MRF. We will discuss some challenges associated with current implementations of cardiac MRF and how these may be overcome using artificial intelligence (AI), including a review of several state-of-the-art deep learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Seraphim A, Knott KD, Augusto J, Bhuva AN, Manisty C, Moon JC. Quantitative cardiac MRI. J Magn Reson Imaging. 2020;51(3):693–711.

    Article  PubMed  Google Scholar 

  2. Ferreira VM, et al. T1 mapping for the diagnosis of acute myocarditis using CMR: comparison to T2-weighted and late gadolinium enhanced imaging. JACC Cardiovasc Imaging. 2013;6(10):1048–58.

    Article  PubMed  Google Scholar 

  3. Messroghli DR, Niendorf T, Schulz-Menger J, Dietz R, Friedrich MG. T1 mapping in patients with acute myocardial infarction. J Cardiovasc Magn Reson. 2003;5(2):353–9.

    Article  PubMed  Google Scholar 

  4. Karamitsos TD, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging. 2013;6(4):488–97.

    Article  PubMed  Google Scholar 

  5. Sado DM, et al. Identification and assessment of anderson-fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging. 2013;6(3):392–8.

    Article  PubMed  Google Scholar 

  6. Ugander M, Oki A, Hsu L. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J. 2012;33(10):1268–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified look-locker inversion recovery (MOLLI) for high-resolution T 1 mapping of the heart. Magn Reson Med. 2004;52(1):141–6.

    Article  PubMed  Google Scholar 

  8. Piechnik SK, et al. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1- mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson. 2010;12:69.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB. Saturation recovery single-shot acquisition (SASHA) for myocardial T 1 mapping. Magn Reson Med. 2014;71(6):2082–95.

    Article  PubMed  Google Scholar 

  10. Giri S, et al. T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson. 2009;11:56.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Crouser ED, Ono C, Tran T, He X, Raman SV. Improved detection of cardiac sarcoidosis using magnetic resonance with myocardial T2 mapping. Am J Respir Crit Care Med. 2014;189(1):109–12.

    PubMed  PubMed Central  Google Scholar 

  12. Abdel-Aty H, et al. Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation. 2004;109(20):2411–6.

    Article  PubMed  Google Scholar 

  13. Santini F, Kawel-Boehm N, Greiser A, Bremerich J, Bieri O. Simultaneous T1 and T2 quantification of the myocardium using cardiac balanced-SSFP inversion recovery with interleaved sampling acquisition (CABIRIA). Magn Reson Med. 2015;74(2):365–71.

    Article  PubMed  Google Scholar 

  14. Blume U, et al. Interleaved T1 and T2 relaxation time mapping for cardiac applications. J Magn Reson Imaging. 2009;29(2):480–7.

    Article  PubMed  Google Scholar 

  15. Akçakaya M, Weingärtner S, Basha TA, Roujol S, Bellm S, Nezafat R. Joint myocardial T1 and T2 mapping using a combination of saturation recovery and T2-preparation. Magn Reson Med. 2016;76(3):888–96.

    Article  CAS  PubMed  Google Scholar 

  16. Bloch F. Nuclear induction. Phys Rev. 1946;70:460.

    Article  CAS  Google Scholar 

  17. Shao J, Rapacchi S, Nguyen K-L, Hu P. Myocardial T1 mapping at 3.0 tesla using an inversion recovery spoiled gradient echo readout and bloch equation simulation with slice profile correction (BLESSPC) T1 estimation algorithm. J Magn Reson Imaging. 2016;43(2):414–25.

    Article  PubMed  Google Scholar 

  18. Xanthis CG, et al. Simulation-based quantification of native T1 and T2 of the myocardium using a modified MOLLI scheme and the importance of Magnetization Transfer. Magn Reson Imaging. 2018;48:96–106.

    Article  PubMed  Google Scholar 

  19. Xanthis CG, Bidhult S, Kantasis G, Heiberg E, Arheden H, Aletras AH. Parallel simulations for QUAntifying RElaxation magnetic resonance constants (SQUAREMR): an example towards accurate MOLLI T1 measurements. J Cardiovasc Magn Reson. 2015;17:104.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Christodoulou AG, et al. Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging. Nat Biomed Eng. 2018;2:215–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O. An optimal radial profile order based on the golden ratio for time-resolved MRI. IEEE Trans Med Imaging. 2007;26(1):68–76.

    Article  PubMed  Google Scholar 

  22. Ma D, et al. Magnetic resonance fingerprinting. Nature. 2013;495(7440):187–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oppelt A, Graumann R, Barfuß H, Fischer H, Hartl W, Schajor W. FISP – a new fast MRI sequence. Electromedica. 1986;54:15–8.

    Google Scholar 

  24. Guzek B, Körzdörfer G, Mathias N, Pfeuffer J. Influence of off-resonance on FISP magnetic resonance fingerprinting (FISP-MRF). In: Proceedings of the Joint Annual Meeting ISMRM-ESMRMB; 2018. p. 4264.

    Google Scholar 

  25. Chen Y, et al. MR fingerprinting for rapid quantitative abdominal imaging. Radiology. 2016;279(1):278–86.

    Article  PubMed  Google Scholar 

  26. Yu AC, et al. Development of a combined Mr fingerprinting and diffusion examination for prostate cancer. Radiology. 2017;283(3):729–38.

    Article  PubMed  Google Scholar 

  27. Assländer J, Glaser SJ, Hennig J. Pseudo steady-state free precession for MR-fingerprinting. Magn Reson Med. 2017;77(3):1151–61.

    Article  PubMed  Google Scholar 

  28. Cruz G, et al. Comparing FLASH vs GRE for 2D cardiac MR fingerprinting. In: Proc. 28th Annu. Meet. ISMRM; 2020. p. 3761.

    Google Scholar 

  29. Weigel M. Extended phase graphs: dephasing, RF pulses, and echoes - pure and simple. J Magn Reson Imaging. 2015;41(2):266–95.

    Article  PubMed  Google Scholar 

  30. Hamilton JI, et al. Investigating and reducing the effects of confounding factors for robust T 1 and T 2 mapping with cardiac MR fingerprinting. Magn Reson Imaging. 2018;53:40–51.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ma D, et al. Slice profile and B1 corrections in 2D magnetic resonance fingerprinting. Magn Reson Med. 2017;78(5):1781–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Körzdörfer G, et al. Magnetic resonance field fingerprinting. Magn Reson Med. 2019;81:2347–59.

    Article  PubMed  Google Scholar 

  33. Buonincontri G, Schulte RF, Cosottini M, Tosetti M. Spiral MR fingerprinting at 7 T with simultaneous B1 estimation. Magn Reson Imaging. 2017;41:1–6.

    Article  PubMed  Google Scholar 

  34. Cloos MA, et al. Multiparametric imaging with heterogeneous radiofrequency fields. Nat Commun. 2016;7:12445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu Y, Hamilton J, Eck B, Griswold M, Seiberlich N. Myocardial T1 and T2 quantification and water–fat separation using cardiac MR fingerprinting with rosette trajectories at 3T and 1.5T. Magn Reson Med. 2021;85(1):103–19.

    Article  CAS  PubMed  Google Scholar 

  36. Buonincontri G, Sawiak SJ. MR Fingerprinting with Simultaneous B1 Estimation. Magn Reson Med. 2016;1135:1127–35.

    Article  Google Scholar 

  37. Körzdörfer G, et al. Effect of spiral undersampling patterns on FISP MRF parameter maps. Magn Reson Imaging. 2019;62:174–80.

    Article  PubMed  Google Scholar 

  38. Pierre EY, Ma D, Chen Y, Badve C, Griswold MA. Multiscale reconstruction for MR fingerprinting. Magn Reson Med. 2016;75(6):2481–92.

    Article  PubMed  Google Scholar 

  39. Doneva M, Amthor T, Koken P, Sommer K, Börnert P. Matrix completion-based reconstruction for undersampled magnetic resonance fingerprinting data. Magn Reson Imaging. 2017;41:41–52.

    Article  PubMed  Google Scholar 

  40. Assländer J, Cloos MA, Knoll F, Sodickson DK, Hennig J, Lattanzi R. Low rank alternating direction method of multipliers reconstruction for MR fingerprinting. Magn Reson Med. 2018;79(1):83–96.

    Article  CAS  PubMed  Google Scholar 

  41. Hamilton JI, et al. MR fingerprinting for rapid quantification of myocardial T1, T2, and proton spin density. Magn Reson Med. 2017;77(4):1446–58.

    Article  PubMed  Google Scholar 

  42. Hamilton JI, et al. Simultaneous mapping of T1 and T2 using cardiac magnetic resonance fingerprinting in a cohort of healthy subjects at 1.5T. J Magn Reson Imaging. 2020;52(4):1044–52.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jaubert O, et al. Water–fat Dixon cardiac magnetic resonance fingerprinting. Magn Reson Med. 2020;83(6):2107–23.

    Article  PubMed  Google Scholar 

  44. Hamilton JI, Jiang Y, Eck B, Griswold M, Seiberlich N. Cardiac cine magnetic resonance fingerprinting for combined ejection fraction, T1 and T2 quantification. NMR Biomed. 2020;33(8):e4323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jaubert O, et al. Free-running cardiac magnetic resonance fingerprinting: joint T1/T2 map and cine imaging. Magn Reson Imaging. 2020;68:173–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cruz G, et al. 3D free-breathing cardiac magnetic resonance fingerprinting. NMR Biomed. 2020;33(10):1–16.

    Article  CAS  Google Scholar 

  47. Ahad J, Lo W-C, Hamilton JI, Franson D, Jiang Y, Seiberlich N. Implementation of cardiac MRF in Gadgetron for online reconstruction. In: Proc. 26th Annu. Meet. ISMRM; 2018. p. 4789.

    Google Scholar 

  48. McGivney DF, et al. SVD compression for magnetic resonance fingerprinting in the time domain. IEEE Trans Med Imaging. 2014;33(12):2311–22.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yang M, et al. Low rank approximation methods for MR fingerprinting with large scale dictionaries. Magn Reson Med. 2018;79(4):2392–400.

    Article  PubMed  Google Scholar 

  50. Cauley SF, et al. Fast group matching for MR fingerprinting reconstruction. Magn Reson Med. 2015;74(2):523–8.

    Article  PubMed  Google Scholar 

  51. Goodfellow I, et al. Generative adversarial nets. In: Advances in neural information processing systems; 2014. pp. 2672–2680.

    Google Scholar 

  52. Yang M, Jiang Y, Ma D, Mehta BB, Griswold MA. Game of learning bloch equation simulations for MR fingerprinting. arXiv; 2020.

    Google Scholar 

  53. Hamilton JI, Seiberlich N. Machine learning for rapid magnetic resonance fingerprinting tissue property quantification. Proc IEEE. 2020;108(1):69–85.

    Article  Google Scholar 

  54. Russek SE, et al. Characterization of NIST/ISMRM MRI System Phantom. In: Proc. 20th Annu. Meet. ISMRM; 2012. p. 2456.

    Google Scholar 

  55. Cohen O, Zhu B, Rosen MS. MR fingerprinting Deep RecOnstruction NEtwork (DRONE). Magn Reson Med. 2018;80(3):885–94.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hamilton JI, Currey D, Rajagopalan S, Seiberlich N. Deep learning reconstruction for cardiac magnetic resonance fingerprinting T1 and T2 mapping. Magn Reson Med. 2021;85(4):2127–35.

    Article  PubMed  Google Scholar 

  57. Wissmann L, Santelli C, Segars WP, Kozerke S. MRXCAT: Realistic numerical phantoms for cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2014;16:63.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Jaubert O, et al. Multi-parametric liver tissue characterization using MR fingerprinting: simultaneous T1, T2, T2*, and fat fraction mapping. Magn Reson Med. 2020;84(5):2625–35.

    Article  CAS  PubMed  Google Scholar 

  59. Küstner T, et al. Fully self-gated free-running 3D Cartesian cardiac CINE with isotropic whole-heart coverage in less than 2 min. NMR Biomed. 2021;34(1):1–13.

    Article  Google Scholar 

  60. Steeden JA, et al. Rapid whole-heart CMR with single volume super-resolution. arXiv; 2019.

    Google Scholar 

  61. Küstner T, et al. CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. Sci Rep. 2020;10:1.

    Article  CAS  Google Scholar 

  62. Hansen MS, Sørensen TS. Gadgetron: an open source framework for medical image reconstruction. Magn Reson Med. 2013;69(6):1768–76.

    Article  PubMed  Google Scholar 

  63. Xue H, Inati S, Sørensen TS, Kellman P, Hansen MS. Distributed MRI reconstruction using Gadgetron-based cloud computing. Magn Reson Med. 2015;73(3):1015–25.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse I. Hamilton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fyrdahl, A., Seiberlich, N., Hamilton, J.I. (2022). Magnetic Resonance Fingerprinting: The Role of Artificial Intelligence. In: De Cecco, C.N., van Assen, M., Leiner, T. (eds) Artificial Intelligence in Cardiothoracic Imaging. Contemporary Medical Imaging. Humana, Cham. https://doi.org/10.1007/978-3-030-92087-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92087-6_20

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-92086-9

  • Online ISBN: 978-3-030-92087-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics