Skip to main content

Artificial Intelligence: A Century-Old Story

  • Chapter
  • First Online:
Artificial Intelligence in Cardiothoracic Imaging

Part of the book series: Contemporary Medical Imaging ((CMI))

Abstract

Artificial intelligence (AI) origins can be dated all the way back to 1948. Alan Turing wrote the first AI manifesto called “Intelligent Machinery,” theorizing that in order to be considered intelligent, a machine should be able to imitate human behavior so as to be indistinguishable from human themselves. In the same period, McCulloch and Pitts first introduced a prototype of neural networks. It was in 1955 at the Dartmouth Conference that the term “artificial intelligence” was used to describe the science aimed to develop machines that simulate human’s behavior. From that point, research in the field of AI never stopped, being a rollercoaster of successes and failures. In more recent times, thanks to the development of more powerful computers and efficient algorithms, the field of AI and especially that of neural networks are gaining more and more attention, reaching some remarkable results such as the defeat of Garry Kasparov in a chess match and the ability to autonomously drive a car. AI is being implemented in multiple areas, including medicine and more importantly medical imaging. Throughout the years, software that can support physicians in making diagnosis, select optimal therapy options, and assess prognosis have been developed. In this chapter, we are discussing some of the crucial steps that led AI development, giving insight in the major hurdles AI has already overcome and which ones are still present in the current age.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muthukrishnan N, et al. Brief history of artificial intelligence. Neuroimaging Clin N Am. 2020;30:393–9.

    Article  PubMed  Google Scholar 

  2. Jones LV. Beyond babbage. Psychometrika. 1963;28:315–31.

    Article  Google Scholar 

  3. Haenlein M, Kaplan A. A brief history of artificial intelligence: on the past, present, and future of artificial intelligence. Calif Manag Rev. 2019;61:5–14.

    Article  Google Scholar 

  4. Turing AM. On computable numbers, with an application to the entscheidungsproblem. London: Mathematical Society; 1936.

    Google Scholar 

  5. Piccinini G. The first computational theory of mind and brain: a close look at McCulloch and Pitts’s ‘logical calculus of ideas immanent in nervous activity’. Synthese. 2004;141:175–215.

    Article  Google Scholar 

  6. Chandru V. The Turing test. Resonance. 1997;2:2–2.

    Article  Google Scholar 

  7. Turing AM. Computing machinery and intelligence. In: Machine intelligence: perspectives on the computational model, vol. LIX 1–28. Hoboken: Taylor and Francis; 2012.

    Google Scholar 

  8. Pinar Saygin A, Cicekli I, Akman V. Turing Test: 50 Years Later. Minds and Machines. 2000;10;463–518. https://doi.org/10.1023/A:1011288000451.

  9. O’Leary DE. GOOGLE’S duplex: pretending to be human. Intell Syst Account Finance Manag. 2019;26:46–53.

    Article  Google Scholar 

  10. Neufeld E, Finnestad S. In defense of the Turing test. AI Soc. 2020;35:819–27.

    Article  Google Scholar 

  11. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. 1943;5:115–33.

    Article  Google Scholar 

  12. Abraham TH. (Physio)logical circuits: the intellectual origins of the McCulloch-Pitts neural networks. J Hist Behav Sci. 2002;38:3–25.

    Article  PubMed  Google Scholar 

  13. Krogh A. What are artificial neural networks? Nat Biotechnol. 2008;26:195–7.

    Article  CAS  PubMed  Google Scholar 

  14. Sondak NE, Sondak VK. Neural networks and artificial intelligence. In: Proceedings of the twentieth SIGCSE technical symposium on computer science education – SIGCSE’89. Association for Computing Machinery (ACM); 1989. p. 241–5. https://doi.org/10.1145/65293.71221.

    Chapter  Google Scholar 

  15. McCarthy J, Minsky ML, Rochester N, Shannon CE. A proposal for the Dartmouth summer research project on artificial intelligence. AI Mag. 2006;27:12–4.

    Google Scholar 

  16. Moor J. Artificial intelligence conference: the next fifty years. AI Mag. 2006;27:87–91.

    Google Scholar 

  17. Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine. Gastrointest Endosc. 2020;92:807–12.

    Article  PubMed  Google Scholar 

  18. Cordeschi R. AI turns fifty: revisiting its origins. Appl Artif Intell. 2007;21:259–79.

    Article  Google Scholar 

  19. Newell A, Simon HA. The logic theory machine a complex information processing system. IRE Trans Inf Theory. 1956;2:61–79.

    Article  Google Scholar 

  20. Newell A, Shaw JC, Simon HA. Elements of a theory of human problem solving. Psychol Rev. 1958;65:151–66.

    Article  Google Scholar 

  21. Newell A, Simon HA. Computer simulation of human thinking. Science (80-). 1961;134:2011–7.

    Article  CAS  Google Scholar 

  22. Newell A, Shaw JC, Simon H. A general problem solving program for a computer. Comput Autom. 1959;8:10–6.

    Google Scholar 

  23. Simon HA, Newell A. Human problem solving: the state of the theory in 1970. Am Psychol. 1971;26:145–59.

    Article  Google Scholar 

  24. Garvey CS. The ‘general problem solver’ does not exist: Mortimer Taube and the art of AI criticism. IEEE Ann Hist Comput. 2021. https://doi.org/10.1109/MAHC.2021.3051686.

  25. Dreyfus HL. What computers still can’t do: a critique of artificial reason. Cambridge: MIT Press; 1992.

    Google Scholar 

  26. Ernst GW, Newell A. Generality and GPS. 1967.

    Google Scholar 

  27. Natale S. If software is narrative: Joseph Weizenbaum, artificial intelligence and the biographies of ELIZA. New Media Soc. 2019;21:712–28.

    Article  Google Scholar 

  28. Weizenbaum J. ELIZA-A computer program for the study of natural language communication between man and machine. Commun ACM. 1966;9:36–45.

    Article  Google Scholar 

  29. Epstein J, Klinkenberg WD. From Eliza to internet: a brief history of computerized assessment. Comput Hum Behav. 2001;17:295–314.

    Article  Google Scholar 

  30. Harnad S. The symbol grounding problem. Phys D Nonlinear Phenom. 1990;42:335–46.

    Article  Google Scholar 

  31. Smolensky P. Connectionist AI, symbolic AI, and the brain. Artif Intell Rev. 1987;1:95–109.

    Article  Google Scholar 

  32. Garnelo M, Shanahan M. Reconciling deep learning with symbolic artificial intelligence: representing objects and relations. Curr Opin Behav Sci. 2019;29:17–23.

    Article  Google Scholar 

  33. Block HD. A review of “perceptrons: an introduction to computational geometry”. Inf Control. 1970;17:501–22.

    Article  Google Scholar 

  34. Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev. 1958;65:386–408.

    Article  CAS  PubMed  Google Scholar 

  35. Rosenblatt F. Perceptron simulation experiments. Proc IRE. 1960;48:301–9.

    Article  Google Scholar 

  36. Nagy G. Neural networks—Then and now. IEEE Trans Neural Netw. 1991;2:316–8.

    Article  CAS  PubMed  Google Scholar 

  37. Block HD. The perceptron: a model for brain functioning. I. Rev Mod Phys. 1962;34:123–35.

    Article  Google Scholar 

  38. Hay JC, Murray AE, Rosenblatt F, Stieber A, Wolf RA. Mark I perceptron operators’ manual. 1960.

    Google Scholar 

  39. Eberhart RC, Dobbins RW. Early neural network development history: the age of Camelot. IEEE Eng Med Biol Mag. 1990;9:15–8.

    Article  CAS  PubMed  Google Scholar 

  40. Olazaran M. A sociological history of the neural network controversy. Adv Comput. 1993;37:335–425.

    Article  Google Scholar 

  41. Wythoff BJ. Backpropagation neural networks. A tutorial. Chemom Intell Lab Syst. 1993;18:115–55.

    Article  CAS  Google Scholar 

  42. Basheer IA, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods. 2000;43:3–31.

    Article  CAS  PubMed  Google Scholar 

  43. Agar JON. What is science for? The Lighthill report on artificial intelligence reinterpreted. Br J Hist Sci. 2020;53:289–310. Cambridge University Press.

    Article  PubMed  Google Scholar 

  44. Lighthill J. Part I artificial intelligence a general survey by Sir James Lighthill FRS Lucasian Professor of Applied Mathematics, 1 Introduction 2 The ABC of the subject. 1972. p. 1–22.

    Google Scholar 

  45. Grudin J. AI and HCI: two fields divided by a common focus. AI Mag. 2009;30:48–57.

    Google Scholar 

  46. van Assen M, Banerjee I, De Cecco CN. Beyond the artificial intelligence hype: what lies behind the algorithms and what we can achieve. J Thorac Imaging. 2020;35. https://doi.org/10.1097/RTI.0000000000000485.

  47. Moto-oka T, Stone HS. Fifth-generation computer systems: a Japanese project. Computer (Long Beach Calif). 1984;17:6–13.

    Google Scholar 

  48. Duda RO, Shortliffe EH. Expert systems research. Science. 1983;220:261–8.

    Article  CAS  PubMed  Google Scholar 

  49. Goel A. The reality and future of expert systems a manager’s view of AI research issues. Inf Syst Manag. 1994;11:53–2.

    Article  Google Scholar 

  50. Gill TG. Early expert systems: where are they now? MIS Q. 1995;19:51–70.

    Article  Google Scholar 

  51. Metaxiotis K, Samouilidis J-E, Psarras J. Expert systems in medicine: academic illusion or real power? J Innov Health Inform. 2000;9:3–8.

    Article  Google Scholar 

  52. Liebowitz J. Expert systems: a short introduction. Eng Fract Mech. 1995;50:601–7.

    Article  Google Scholar 

  53. Lindsay RK, Buchanan BG, Feigenbaum EA, Lederberg J. DENDRAL: a case study of the first expert system for scientific hypothesis formation. Artif Intell. 1993;61:209–61.

    Article  Google Scholar 

  54. Sviokla JJ. An examination of the impact of expert systems on the firm: the case of XCON. MIS Q. 1990;14:127–40.

    Article  Google Scholar 

  55. Ackley DH, Hinton GE, Sejnowski TJ. A learning algorithm for Boltzmann machines. Cogn Sci. 1985;9:147–69.

    Article  Google Scholar 

  56. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–6.

    Article  Google Scholar 

  57. Werbos PJ. Backpropagation through time: what it does and how to do it. Proc IEEE. 1990;78:1550–60.

    Article  Google Scholar 

  58. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    Article  CAS  PubMed  Google Scholar 

  59. Rumelhart DE, et al. Learning internal representations by error propagation. Ft. Belvoir: Defense Technical Information Center; 1985.

    Book  Google Scholar 

  60. McCarthy J. Some expert systems need common sense. Ann N Y Acad Sci. 1984;426:129–37.

    Article  CAS  PubMed  Google Scholar 

  61. Silva FM, Almeida LB. Speeding up backpropagation. In: Advanced neural computers. Elsevier; 1990. p. 151–8. https://doi.org/10.1016/b978-0-444-88400-8.50022-4.

    Chapter  Google Scholar 

  62. Sutton R. Two problems with back propagation and other steepest descent learning procedures for networks. In: Proceedings of the eighth annual conference of the Cognitive Science Society; 1986. p. 823–32.

    Google Scholar 

  63. Fahlman SE. An empirical study of learning speed in back-propagation networks. Pittsburgh: Carnegie Mellon University; 1988.

    Google Scholar 

  64. Gori M, Tesi A. On the problem of local minima in backpropagation. IEEE Trans Pattern Anal Mach Intell. 1992;14:76–86.

    Article  Google Scholar 

  65. Ongsulee P. Artificial intelligence, machine learning and deep learning. In: International conference on ICT and knowledge engineering. IEEE Computer Society; 2018. p. 1–6. https://doi.org/10.1109/ICTKE.2017.8259629.

    Chapter  Google Scholar 

  66. Schlegel D. Deep machine learning on GPUs. Semin Talk-Deep Mach Learn Gpus. 2015;1.

    Google Scholar 

  67. Baji T. Evolution of the GPU device widely used in AI and massive parallel processing. In: 2018 IEEE Electron Devices Technol. Manuf. Conf. EDTM 2018 – Proc; 2018. p. 7–9. https://doi.org/10.1109/EDTM.2018.8421507.

    Chapter  Google Scholar 

  68. van Assen M, Lee SJ, De Cecco CN. Artificial intelligence from A to Z: from neural network to legal framework. Eur J Radiol. 2020. https://doi.org/10.1016/j.ejrad.2020.109083.

  69. Newborn M. Deep Blue’s contribution to AI. Ann Math Artif Intell. 2000;28:27–30.

    Article  Google Scholar 

  70. Campbell M, Hoane AJ, Hsu FH. Deep blue. Artif Intell. 2002;134:57–83.

    Article  Google Scholar 

  71. Schaeffer J, Plaat A. Kasparov versus deep blue: the rematch. J Int Comput Games Assoc. 1997;20:95–101.

    Google Scholar 

  72. LeCun Y, et al. Handwritten digit recognition with a back-propagation network. In: Touretzky D, editor. Advances in neural information processing systems, vol. 2. San Mateo: Morgan-Kaufmann; 1990.

    Google Scholar 

  73. Albawi S, Mohammed TA, Al-Zawi S. Understanding of a convolutional neural network. In: Proceedings of 2017 international conference on engineering and technology, ICET 2017, vols. 2018-January 1–6. Institute of Electrical and Electronics Engineers Inc.; 2018.

    Google Scholar 

  74. Ferrucci DA. Introduction to ‘This is Watson’. IBM J Res Dev. 2012;56:1:1–1:15.

    Google Scholar 

  75. Hoy M, Alexa B. Siri, Cortana, and More: an introduction to voice assistants. Med Ref Serv Q. 2018;37:81–8.

    Article  PubMed  Google Scholar 

  76. Aizenberg IN, et al. Multiple-valued threshold logic and multi-valued neurons. In: Multi-valued and universal binary neurons. Springer US; 2000. p. 25–80. https://doi.org/10.1007/978-1-4757-3115-6_2.

    Chapter  Google Scholar 

  77. Chen J, et al. Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography: a prospective study. medRxiv 2020.02.25.20021568. 2020. https://doi.org/10.1101/2020.02.25.20021568.

  78. Rusk N. Deep learning. Nat Methods. 2015;13:35.

    Article  CAS  Google Scholar 

  79. Russakovsky O, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis. 2015;115:211–52.

    Article  Google Scholar 

  80. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60:84–90.

    Article  Google Scholar 

  81. Szegedy C, et al. Going deeper with convolutions. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, vols. 07–12-June 1–9. IEEE Computer Society; 2015.

    Google Scholar 

  82. Ballester P, Araujo R. On the performance of GoogLeNet and AlexNet applied to sketches. In: Proceedings of the AAAI conference on artificial intelligence, vol. 30(1). 2016. https://ojs.aaai.org/index.php/AAAI/article/view/10171.

  83. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, vols. 2016-Decem. IEEE Computer Society; 2016. p. 770–78.

    Google Scholar 

  84. Xing L, Giger M, Min JK. Artificial intelligence in medicine: technical basis and clinical applications. Asmterdam The Netherlands: Elsevier; 2020.

    Google Scholar 

  85. Perry CA. Knowledge bases in medicine: a review. Bull Med Libr Assoc. 1990;78:271–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Shortliffe EH. Computer-based medical consultations, MYCIN. Asmterdam The Netherlands: Elsevier; 1976.

    Google Scholar 

  87. Kulikowski CA. Beginnings of Artificial Intelligence in Medicine (AIM): computational artifice assisting scientific inquiry and clinical art – with reflections on present AIM challenges. Yearb Med Inform. 2019;28:249–56.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kulikowski CA. An opening chapter of the first generation of artificial intelligence in medicine: the first Rutgers AIM workshop, June 1975. Yearb Med Inform. 2015;10:227–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Barnett GO, Cimino JJ, Hupp JA, Hoffer EP. DXplain. An evolving diagnostic decision-support system. JAMA. 1987;258:67–74.

    Article  CAS  PubMed  Google Scholar 

  90. Hoffer EP, Feldman MJ, Kim RJ, Famiglietti KT, Barnett GO. DXplain: patterns of use of a mature expert system. AMIA Annu Symp Proc. 2005;2005:321–5.

    PubMed Central  Google Scholar 

  91. Martinez-Franco AI, et al. Diagnostic accuracy in family medicine residents using a clinical decision support system (DXplain): a randomized-controlled trial. Diagnosis (Berl). 2018;5:71–6.

    Article  Google Scholar 

  92. Bakkar N, et al. Artificial intelligence in neurodegenerative disease research: use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis. Acta Neuropathol. 2018;135:227–47.

    Article  CAS  PubMed  Google Scholar 

  93. Esteva A, et al. A guide to deep learning in healthcare. Nat Med. 2019;25:24–9.

    Article  CAS  PubMed  Google Scholar 

  94. Litjens G, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.

    Article  PubMed  Google Scholar 

  95. Shickel B, Tighe PJ, Bihorac A, Rashidi P. Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE J Biomed Health Inform. 2018;22:1589–604.

    Article  PubMed  Google Scholar 

  96. Leung MK, Xiong HY, Lee LJ, Frey BJ. Deep learning of the tissue-regulated splicing code. Bioinformatics. 2014;30:i121–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. van Grinsven MJ, van Ginneken B, Hoyng CB, Theelen T, Sanchez CI. Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE Trans Med Imaging. 2016;35:1273–84.

    Article  PubMed  Google Scholar 

  98. Young JD, Cai C, Lu X. Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma. BMC Bioinformatics. 2017;18:381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Maji D, Santara A, Ghosh S, Sheet D, Mitra P. Deep neural network and random forest hybrid architecture for learning to detect retinal vessels in fundus images. Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:3029–32.

    PubMed  Google Scholar 

  100. Premaladha J, Ravichandran KS. Novel approaches for diagnosing melanoma skin lesions through supervised and deep learning algorithms. J Med Syst. 2016;40:96.

    Article  CAS  PubMed  Google Scholar 

  101. Yasaka K, Abe O. Deep learning and artificial intelligence in radiology: current applications and future directions. PLoS Med. 2018;15:e1002707.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Safi Z, Abd-Alrazaq A, Khalifa M, Househ M. Technical aspects of developing chatbots for medical applications: scoping review. J Med Internet Res. 2020;22:e19127.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Chen J, Supnithi T, Tang X, Theeramunkong T. Knowledge and systems sciences: 18th International Symposium, KSS 2017, Bangkok, Thailand, November 17–19, 2017, Proceedings. In: Communications in computer and information science, 1 online resource. 2017, XX, p. 267, 84 illustrations. https://doi.org/10.1007/978-981-10-6989-5.

  104. Comendador BEV, Francisco BMB, Medenilla JS, Nacion SMT, Serac TBE. Pharmabot: a pediatric generic medicine consultant chatbot. J Autom Control Eng. 2015;3:137–40.

    Article  Google Scholar 

  105. Long JB, Ehrenfeld JM. The role of augmented intelligence (AI) in detecting and preventing the spread of novel Coronavirus. J Med Syst. 2020;44:1–2.

    Article  CAS  Google Scholar 

  106. Zhou Y, Wang F, Tang J, Nussinov R, Cheng F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit Health. 2020;2:e667–76.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp. 2018;2:35.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Tang X. The role of artificial intelligence in medical imaging research. BJR Open. 2020;2:20190031.

    PubMed  Google Scholar 

  109. Fenton JJ, et al. Influence of computer-aided detection on performance of screening mammography. N Engl J Med. 2007;356:1399–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fujita H, Katafuchi T, Uehara T, Nishimura T. Application of artificial neural network to computer-aided diagnosis of coronary artery disease in myocardial SPECT bull’s-eye images. J Nucl Med. 1992;33:272–6.

    CAS  PubMed  Google Scholar 

  111. Wu YC, et al. Classification of microcalcifications in radiographs of pathologic specimens for the diagnosis of breast cancer. Acad Radiol. 1995;2:199–204.

    Article  CAS  PubMed  Google Scholar 

  112. Lin JS, Ligomenides PA, Freedman MT, Mun SK. Application of artificial neural networks for reduction of false-positive detections in digital chest radiographs. Proc Annu Symp Comput Appl Med Care. 1993:434–8. PMID: 8130511; PMCID: PMC2248546.

    Google Scholar 

  113. Lakhani P, et al. Machine learning in radiology: applications beyond image interpretation. J Am Coll Radiol. 2018;15:350–9.

    Article  PubMed  Google Scholar 

  114. Langlotz CP. Will artificial intelligence replace radiologists? Radiol Artif Intell. 2019;1:e190058.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo N. De Cecco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Assen, M., Muscogiuri, E., Tessarin, G., De Cecco, C.N. (2022). Artificial Intelligence: A Century-Old Story. In: De Cecco, C.N., van Assen, M., Leiner, T. (eds) Artificial Intelligence in Cardiothoracic Imaging. Contemporary Medical Imaging. Humana, Cham. https://doi.org/10.1007/978-3-030-92087-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92087-6_1

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-92086-9

  • Online ISBN: 978-3-030-92087-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics