Skip to main content

Artificial Intelligence-Based Contrast Medium Optimization

  • Chapter
  • First Online:
Artificial Intelligence in Cardiothoracic Imaging

Part of the book series: Contemporary Medical Imaging ((CMI))

  • 1674 Accesses

Abstract

Contrast media (CM) application is important for the evaluation of the heart with both computed tomography (CT) and magnetic resonance imaging (MRI). In many hospitals around the world, CM is still used in a “one-size-fits-all” fashion, usually with a “safety margin” regarding CM volume, guaranteeing sufficient enhancement even in the heavier patient. The primary reason for using standard protocols instead of optimising CM for individual patients is the fact that CM administration is still largely a manual action, time-consuming and regarded as sensitive for errors. Artificial intelligence (AI) techniques could play a role in that respect. If AI can select the optimal CM injection protocol for the specific patient, on a particular CT or MRI scanner for the clinical scan indication, AI would improve both patient care and workflow. Different aspects might extend the study or make the study more difficult, e.g., patient anxiety, difficult venous access and/or an irregular heartbeat. In case these factors could be taken into account when scheduling the examination, that would further improve workflow. In addition, AI might help in further reducing CM, scan time and – in case of CT – radiation dose. The position of AI with regard to CM optimisation is not thoroughly studied yet, and this chapter aims to offer insights into possible future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Plank F, Friedrich G, Dichtl W, Klauser A, Jaschke W, Franz WM, et al. The diagnostic and prognostic value of coronary CT angiography in asymptomatic high-risk patients: a cohort study. Open Heart. 2014;1(1):e000096.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Eijsvoogel NG, Hendriks BMF, Nelemans P, Mihl C, Willigers J, Martens B, et al. Personalization of CM injection protocols in coronary computed tomographic angiography (people CT trial). Contrast Media Mol Imaging. 2020;2020:5407936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fleischmann U, Pietsch H, Korporaal JG, Flohr TG, Uder M, Jost G, et al. Impact of contrast media concentration on low-kilovolt computed tomography angiography: a systematic preclinical approach. Investig Radiol. 2018;53(5):264–70.

    Article  Google Scholar 

  4. Kok M, Mihl C, Hendriks BM, Altintas S, Kietselaer BL, Wildberger JE, et al. Optimizing contrast media application in coronary CT angiography at lower tube voltage: evaluation in a circulation phantom and sixty patients. Eur J Radiol. 2016;85(6):1068–74.

    Article  PubMed  Google Scholar 

  5. Rengo M, Dharampal A, Lubbers M, Kock M, Wildberger JE, Das M, et al. Impact of iodine concentration and iodine delivery rate on contrast enhancement in coronary CT angiography: a randomized multicenter trial (CT-CON). Eur Radiol. 2019;29(11):6109–18.

    Article  PubMed  Google Scholar 

  6. Mihl C, Kok M, Altintas S, Kietselaer BL, Turek J, Wildberger JE, et al. Evaluation of individually body weight adapted contrast media injection in coronary CT-angiography. Eur J Radiol. 2016;85(4):830–6.

    Article  PubMed  Google Scholar 

  7. Martens B, Hendriks BMF, Mihl C, Wildberger JE. Tailoring contrast media protocols to varying tube voltages in vascular and parenchymal CT imaging: the 10-to-10 rule. Investig Radiol. 2020;55(10):673–6.

    Article  CAS  Google Scholar 

  8. Cademartiri F, Nieman K, van der Lugt A, Raaijmakers RH, Mollet N, Pattynama PM, et al. Intravenous contrast material administration at 16-detector row helical CT coronary angiography: test bolus versus bolus-tracking technique. Radiology. 2004;233(3):817–23.

    Article  PubMed  Google Scholar 

  9. Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology. 2010;256(1):32–61.

    Article  PubMed  Google Scholar 

  10. Hinzpeter R, Eberhard M, Gutjahr R, Reeve K, Pfammatter T, Lachat M, et al. CT angiography of the aorta: contrast timing by using a fixed versus a patient-specific trigger delay. Radiology. 2019;291(2):531–8.

    Article  PubMed  Google Scholar 

  11. Machida H, Tanaka I, Fukui R, Shen Y, Ishikawa T, Tate E, et al. Current and novel imaging techniques in coronary CT. Radiographics. 2015;35(4):991–1010.

    Article  PubMed  Google Scholar 

  12. Lell MM, Wildberger JE, Alkadhi H, Damilakis J, Kachelriess M. Evolution in computed tomography: the Battle for speed and dose. Investig Radiol. 2015;50(9):629–44.

    Article  Google Scholar 

  13. Frauenfelder T, Appenzeller P, Karlo C, Scheffel H, Desbiolles L, Stolzmann P, et al. Triple rule-out CT in the emergency department: protocols and spectrum of imaging findings. Eur Radiol. 2009;19(4):789–99.

    Article  PubMed  Google Scholar 

  14. Kidoh M, Nakaura T, Nakamura S, Namimoto T, Nozaki T, Sakaino N, et al. Contrast material and radiation dose reduction strategy for triple-rule-out cardiac CT angiography: feasibility study of non-ECG-gated low kVp scan of the whole chest following coronary CT angiography. Acta Radiol. 2014;55(10):1186–96.

    Article  PubMed  Google Scholar 

  15. Santini G, Zumbo L, Martini N, Valvano G, Leo A, Ripoli A, et al. Synthetic contrast enhancement in cardiac CT with deep learning 2018. Available from: https://arxiv.org/pdf/1807.01779.pdf.

  16. Mannil M, von Spiczak J, Manka R, Alkadhi H. Texture analysis and machine learning for detecting myocardial infarction in noncontrast low-dose computed tomography: unveiling the invisible. Investig Radiol. 2018;53(6):338–43.

    Article  Google Scholar 

  17. Nijssen EC, Rennenberg RJ, Nelemans PJ, Essers BA, Janssen MM, Vermeeren MA, et al. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet. 2017;389(10076):1312–22.

    Article  PubMed  Google Scholar 

  18. Kormos JL, Schulz M, Ternes TA. Occurrence of iodinated X-ray contrast media and their biotransformation products in the urban water cycle. Environ Sci Technol. 2011;45(20):8723–32.

    Article  CAS  PubMed  Google Scholar 

  19. Ibrahim A, Primakov S, Beuque M, Woodruff HC, Halilaj I, Wu G, et al. Radiomics for precision medicine: current challenges, future prospects, and the proposal of a new framework. Methods. 2020;188:20–9.

    Article  PubMed  Google Scholar 

  20. Takumi K, Fukukura Y, Shindo T, Kumagae Y, Tateyama A, Kamiyama T, et al. Feasibility of a fixed scan delay technique using a previous bolus tracking technique data for dynamic hepatic CT. Eur J Radiol. 2012;81(11):2996–3001.

    Article  PubMed  Google Scholar 

  21. Eberhard M, Alkadhi H. Machine learning and deep neural networks: applications in patient and scan preparation, contrast medium, and radiation dose optimization. J Thorac Imaging. 2020;35(Suppl 1):S17–20.

    Article  PubMed  Google Scholar 

  22. Yuki H, Utsunomiya D, Funama Y, Tokuyasu S, Namimoto T, Hirai T, et al. Value of knowledge-based iterative model reconstruction in low-kV 256-slice coronary CT angiography. J Cardiovasc Comput Tomogr. 2014;8(2):115–23.

    Article  PubMed  Google Scholar 

  23. Iyama Y, Nakaura T, Yokoyama K, Kidoh M, Harada K, Oda S, et al. Low-contrast and low-radiation dose protocol in cardiac computed tomography: usefulness of low tube voltage and knowledge-based iterative model reconstruction algorithm. J Comput Assist Tomogr. 2016;40(6):941–7.

    Article  PubMed  Google Scholar 

  24. Wang Y, Yu M, Wang M, Wang Y, Kong L, Yi Y, et al. Application of artificial intelligence-based image optimization for computed tomography angiography of the aorta with low tube voltage and reduced contrast medium volume. J Thorac Imaging. 2019;34(6):393–9.

    Article  PubMed  Google Scholar 

  25. Willemink MJ, Noel PB. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence. Eur Radiol. 2019;29(5):2185–95.

    Article  PubMed  Google Scholar 

  26. von Knebel Doeberitz PL, De Cecco CN, Schoepf UJ, Albrecht MH, van Assen M, De Santis D, et al. Impact of coronary computerized tomography angiography-derived plaque quantification and machine-learning computerized tomography fractional flow reserve on adverse cardiac outcome. Am J Cardiol. 2019;124(9):1340–8.

    Article  Google Scholar 

  27. Kolossvary M, De Cecco CN, Feuchtner G, Maurovich-Horvat P. Advanced atherosclerosis imaging by CT: Radiomics, machine learning and deep learning. J Cardiovasc Comput Tomogr. 2019;13(5):274–80.

    Article  PubMed  Google Scholar 

  28. Duarte Conde MP, de Korte AM, Meijer FJA, Aquarius R, Boogaarts HD, Bartels R, et al. Subtraction CTA: an alternative imaging option for the follow-up of flow-diverter-treated aneurysms? AJNR Am J Neuroradiol. 2018;39(11):2051–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saur SC, Alkadhi H, Stolzmann P, Baumuller S, Leschka S, Scheffel H, et al. Effect of reader experience on variability, evaluation time and accuracy of coronary plaque detection with computed tomography coronary angiography. Eur Radiol. 2010;20(7):1599–606.

    Article  PubMed  Google Scholar 

  30. van Assen M, Varga-Szemes A, Schoepf UJ, Duguay TM, Hudson HT, Egorova S, et al. Automated plaque analysis for the prognostication of major adverse cardiac events. Eur J Radiol. 2019;116:76–83.

    Article  PubMed  Google Scholar 

  31. Spyropoulos CD. AI planning and scheduling in the medical hospital environment. Artif Intell Med. 2000;20(2):101–11.

    Article  CAS  PubMed  Google Scholar 

  32. Scholtz JE, Ghoshhajra B. Advances in cardiac CT contrast injection and acquisition protocols. Cardiovasc Diagn Ther. 2017;7(5):439–51.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ghekiere O, Salgado R, Buls N, Leiner T, Mancini I, Vanhoenacker P, et al. Image quality in coronary CT angiography: challenges and technical solutions. Br J Radiol. 2017;90(1072):20160567.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lau A. The ethics of self-driving cars. Should cars determine if you live or die? 2020. Available from: https://towardsdatascience.com/the-ethics-of-self-driving-cars-efaaaaf9e320.

  35. Mukherjee S. A.I Versus M.D. 2017. Available from: http://www.newyorker.com/magazine/2017/04/03/ai-versus-md.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casper Mihl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martens, B., Hendriks, B.M.F., Wildberger, J.E., Mihl, C. (2022). Artificial Intelligence-Based Contrast Medium Optimization. In: De Cecco, C.N., van Assen, M., Leiner, T. (eds) Artificial Intelligence in Cardiothoracic Imaging. Contemporary Medical Imaging. Humana, Cham. https://doi.org/10.1007/978-3-030-92087-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92087-6_16

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-92086-9

  • Online ISBN: 978-3-030-92087-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics