Skip to main content

LncRNAs and Cardiovascular Disease

  • Chapter
  • First Online:
Long Noncoding RNA

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1363))

Abstract

A novel class of RNA molecule emerged from human transcriptome sequencing studies termed long non-coding RNAs. These RNA molecules differ from other classes of non-coding RNAs such as microRNAs in their sizes, sequence motifs and structures. Studies have demonstrated that long non-coding RNAs play a prominent role in the development and progression of cardiovascular disease. They provide the cell with tiered levels of gene regulation interacting with DNA, other RNA molecules or proteins acting in various capacities to control a variety of cellular mechanisms. Cell specificity is a hallmark of lncRNA studies and they have been identified in macrophages, smooth muscle cells, endothelial cells and hepatocytes. Recent lncRNA studies have uncovered functional micropeptides encoded within lncRNA genes that can have a different function to the lncRNA. Disease associated mutations in the genome tend to occur in non-coding regions signifying the importance of non-coding genes in disease associations. There is a great deal of work to be done in the non-coding RNA field and tremendous therapeutic potential due to their cell type specificity. A better understanding of the functions and interactions of lncRNAs will inevitably have clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nikpay M et al (2015) A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 47:1121–1130. https://doi.org/10.1038/ng.3396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Djebali S et al (2012) Landscape of transcription in human cells. Nature 489:101–108. https://doi.org/10.1038/nature11233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hangauer MJ, Vaughn IW, McManus MT (2013) Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 9:e1003569. https://doi.org/10.1371/journal.pgen.1003569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iyer MK et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47:199–208. https://doi.org/10.1038/ng.3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hon CC et al (2017) An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 543:199–204. https://doi.org/10.1038/nature21374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ruan X et al (2020) In vivo functional analysis of non-conserved human lncRNAs associated with cardiometabolic traits. Nat Commun 11:45. https://doi.org/10.1038/s41467-019-13688-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Taft RJ, Pheasant M, Mattick JS (2007) The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays 29:288–299. https://doi.org/10.1002/bies.20544

    Article  CAS  PubMed  Google Scholar 

  8. Awan HM, Shah A, Rashid F, Shan G (2017) Primate-specific long non-coding RNAs and microRNAs. Genomics Proteomics Bioinformatics 15:187–195. https://doi.org/10.1016/j.gpb.2017.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ulitsky I (2016) Evolution to the rescue: using comparative genomics to understand long non-coding RNAs. Nat Rev Genet 17:601–614. https://doi.org/10.1038/nrg.2016.85

    Article  CAS  PubMed  Google Scholar 

  10. Yen ZC, Meyer IM, Karalic S, Brown CJ (2007) A cross-species comparison of X-chromosome inactivation in Eutheria. Genomics 90:453–463. https://doi.org/10.1016/j.ygeno.2007.07.002

    Article  CAS  PubMed  Google Scholar 

  11. Hennessy EJ (2017) Cardiovascular disease and long noncoding RNAs: tools for unraveling the mystery Lnc-ing RNA and phenotype. Circ Cardiovasc Genet 10:e001556. https://doi.org/10.1161/CIRCGENETICS.117.001556

    Article  CAS  PubMed  Google Scholar 

  12. Amaral PP, Mattick JS (2008) Noncoding RNA in development. Mamm Genome 19:454–492. https://doi.org/10.1007/s00335-008-9136-7

    Article  CAS  PubMed  Google Scholar 

  13. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914. https://doi.org/10.1016/j.molcel.2011.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mumbach MR et al (2019) HiChIRP reveals RNA-associated chromosome conformation. Nat Methods 16:489–492. https://doi.org/10.1038/s41592-019-0407-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Isoda T et al (2017) Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer-Ppomoter communication and T cell fate. Cell 171:103–119.e118. https://doi.org/10.1016/j.cell.2017.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bosson AD, Zamudio JR, Sharp PA (2014) Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol Cell 56:347–359. https://doi.org/10.1016/j.molcel.2014.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358. https://doi.org/10.1016/j.cell.2011.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dinger ME et al (2008) Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res 18:1433–1445. https://doi.org/10.1101/gr.078378.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jia H et al (2010) Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA 16:1478–1487. https://doi.org/10.1261/rna.1951310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ponjavic J, Oliver PL, Lunter G, Ponting CP (2009) Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genet 5:e1000617. https://doi.org/10.1371/journal.pgen.1000617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17:556–565. https://doi.org/10.1101/gr.6036807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sauvageau M et al (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife 2:e01749. https://doi.org/10.7554/eLife.01749

    Article  PubMed  PubMed Central  Google Scholar 

  23. Grote P, Herrmann BG (2013) The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biol 10:1579–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grote P et al (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24:206–214. https://doi.org/10.1016/j.devcel.2012.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Klattenhoff CA et al (2013) Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152:570–583. https://doi.org/10.1016/j.cell.2013.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hennessy EJ et al (2019) The long noncoding RNA CHROME regulates cholesterol homeostasis in primate. Nat Metab 1:98–110. https://doi.org/10.1038/s42255-018-0004-9

    Article  CAS  PubMed  Google Scholar 

  27. Sallam T et al (2016) Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. Nature 534:124–128. https://doi.org/10.1038/nature17674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sallam T et al (2018) Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA. Nat Med 24:304–312. https://doi.org/10.1038/nm.4479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barker DJ (2000) In utero programming of cardiovascular disease. Theriogenology 53:555–574. https://doi.org/10.1016/s0093-691x(99)00258-7

    Article  CAS  PubMed  Google Scholar 

  30. Dobbing J (1993) Fetal nutrition and cardiovascular disease in adult life. Lancet 341:1421–1422

    Article  CAS  PubMed  Google Scholar 

  31. Wang T et al (2019) Congenital heart disease and risk of cardiovascular disease: a meta-analysis of cohort studies. J Am Heart Assoc 8:e012030. https://doi.org/10.1161/JAHA.119.012030

    Article  PubMed  PubMed Central  Google Scholar 

  32. Niwa K (2019) Metabolic syndrome in adult congenital heart disease. Korean Circ J 49:691–708. https://doi.org/10.4070/kcj.2019.0187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147:1537–1550. https://doi.org/10.1016/j.cell.2011.11.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang KC et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472:120–124. https://doi.org/10.1038/nature09819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166. https://doi.org/10.1146/annurev-biochem-051410-092902

    Article  CAS  PubMed  Google Scholar 

  36. Munteanu MC et al (2020) Long non-coding RNA FENDRR regulates IFNgamma-induced M1 phenotype in macrophages. Sci Rep 10:13672. https://doi.org/10.1038/s41598-020-70633-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xue Z et al (2016) A G-rich motif in the lncRNA braveheart interacts with a zinc-finger transcription factor to specify the cardiovascular lineage. Mol Cell 64:37–50. https://doi.org/10.1016/j.molcel.2016.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim DN et al (2020) Zinc-finger protein CNBP alters the 3-D structure of lncRNA Braveheart in solution. Nat Commun 11:148. https://doi.org/10.1038/s41467-019-13942-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ounzain S et al (2015) CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis. J Mol Cell Cardiol 89:98–112. https://doi.org/10.1016/j.yjmcc.2015.09.016

    Article  CAS  PubMed  Google Scholar 

  40. Honold L, Nahrendorf M (2018) Resident and monocyte-derived macrophages in cardiovascular disease. Circ Res 122:113–127. https://doi.org/10.1161/CIRCRESAHA.117.311071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zelcer N, Tontonoz P (2006) Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest 116:607–614. https://doi.org/10.1172/JCI27883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ignatova ID, Angdisen J, Moran E, Schulman IG (2013) Differential regulation of gene expression by LXRs in response to macrophage cholesterol loading. Mol Endocrinol 27:1036–1047. https://doi.org/10.1210/me.2013-1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schultz JR et al (2000) Role of LXRs in control of lipogenesis. Genes Dev 14:2831–2838. https://doi.org/10.1101/gad.850400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xiao X, Song BL (2013) SREBP: a novel therapeutic target. Acta Biochim Biophys Sin 45:2–10. https://doi.org/10.1093/abbs/gms112

    Article  CAS  PubMed  Google Scholar 

  45. Sokolov A, Radhakrishnan A (2010) Accessibility of cholesterol in endoplasmic reticulum membranes and activation of SREBP-2 switch abruptly at a common cholesterol threshold. J Biol Chem 285:29480–29490. https://doi.org/10.1074/jbc.M110.148254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Radhakrishnan A, Goldstein JL, McDonald JG, Brown MS (2008) Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab 8:512–521. https://doi.org/10.1016/j.cmet.2008.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yvan-Charvet L, Wang N, Tall AR (2010) Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol 30:139–143. https://doi.org/10.1161/ATVBAHA.108.179283

    Article  CAS  PubMed  Google Scholar 

  48. Ouimet M et al (2016) miRNA targeting of oxysterol-binding protein-like 6 regulates cholesterol trafficking and efflux. Arterioscler Thromb Vasc Biol 36:942–951. https://doi.org/10.1161/ATVBAHA.116.307282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li Y, Sun T, Shen S, Wang L, Yan J (2019) LncRNA DYNLRB2-2 inhibits THP-1 macrophage foam cell formation by enhancing autophagy. Biol Chem 400(8):1047–1057. https://doi.org/10.1515/hsz-2018-0461

    Article  CAS  Google Scholar 

  50. Hu YW et al (2014) A lincRNA-DYNLRB2-2/GPR119/GLP-1R/ABCA1-dependent signal transduction pathway is essential for the regulation of cholesterol homeostasis. J Lipid Res 55:681–697. https://doi.org/10.1194/jlr.M044669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yan Y, Song D, Wu J, Wang J (2020) Long non-coding RNAs link oxidized low-density lipoprotein with the inflammatory response of macrophages in atherogenesis. Front Immunol 11:24. https://doi.org/10.3389/fimmu.2020.00024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang-Fu N, Cheng JS, Wang Y, Li ZW, Wang SH (2018) Neat1 regulates oxidized low-density lipoprotein-induced inflammation and lipid uptake in macrophages via paraspeckle formation. Mol Med Rep 17:3092–3098. https://doi.org/10.3892/mmr.2017.8211

    Article  CAS  PubMed  Google Scholar 

  53. Hirose T et al (2014) NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol Biol Cell 25:169–183. https://doi.org/10.1091/mbc.E13-09-0558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Prinz F, Kapeller A, Pichler M, Klec C (2019) The implications of the long non-coding RNA NEAT1 in non-cancerous diseases. Int J Mol Sci 20:627. https://doi.org/10.3390/ijms20030627

    Article  CAS  PubMed Central  Google Scholar 

  55. Hu YW et al (2015) RP5-833A20.1/miR-382-5p/NFIA-dependent signal transduction pathway contributes to the regulation of cholesterol homeostasis and inflammatory reaction. Arterioscler Thromb Vasc Biol 35:87–101. https://doi.org/10.1161/ATVBAHA.114.304296

    Article  CAS  PubMed  Google Scholar 

  56. Reddy MA et al (2014) Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA. Diabetes 63:4249–4261. https://doi.org/10.2337/db14-0298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schmidt E et al (2018) LincRNA H19 protects from dietary obesity by constraining expression of monoallelic genes in brown fat. Nat Commun 9:3622. https://doi.org/10.1038/s41467-018-05933-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Raveh E, Matouk IJ, Gilon M, Hochberg A (2015) The H19 Long non-coding RNA in cancer initiation, progression and metastasis – a proposed unifying theory. Mol Cancer 14:184. https://doi.org/10.1186/s12943-015-0458-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gabory A et al (2009) H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development 136:3413–3421. https://doi.org/10.1242/dev.036061

    Article  CAS  PubMed  Google Scholar 

  60. Poole RL et al (2012) Beckwith-Wiedemann syndrome caused by maternally inherited mutation of an OCT-binding motif in the IGF2/H19-imprinting control region, ICR1. Eur J Hum Genet 20:240–243. https://doi.org/10.1038/ejhg.2011.166

    Article  CAS  PubMed  Google Scholar 

  61. Wevrick R, Kerns JA, Francke U (1994) Identification of a novel paternally expressed gene in the Prader-Willi syndrome region. Hum Mol Genet 3:1877–1882. https://doi.org/10.1093/hmg/3.10.1877

    Article  CAS  PubMed  Google Scholar 

  62. Zhang Y, Tycko B (1992) Monoallelic expression of the human H19 gene. Nat Genet 1:40–44. https://doi.org/10.1038/ng0492-40

    Article  CAS  PubMed  Google Scholar 

  63. Li X et al (2016) LncRNA H19/miR-675 axis regulates cardiomyocyte apoptosis by targeting VDAC1 in diabetic cardiomyopathy. Sci Rep 6:36340. https://doi.org/10.1038/srep36340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hu Y, Li S, Zou Y (2019) Knockdown of lncRNA H19 relieves LPS-induced damage by modulating miR-130a in osteoarthritis. Yonsei Med J 60:381–388. https://doi.org/10.3349/ymj.2019.60.4.381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zheng H et al (2016) Regulation and mechanism of mouse miR-130a/b in metabolism-related inflammation. Int J Biochem Cell Biol 74:72–83. https://doi.org/10.1016/j.biocel.2016.02.021

    Article  CAS  PubMed  Google Scholar 

  66. Han DK, Khaing ZZ, Pollock RA, Haudenschild CC, Liau G (1996) H19, a marker of developmental transition, is reexpressed in human atherosclerotic plaques and is regulated by the insulin family of growth factors in cultured rabbit smooth muscle cells. J Clin Invest 97:1276–1285. https://doi.org/10.1172/JCI118543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Han Y, Ma J, Wang J, Wang L (2018) Silencing of H19 inhibits the adipogenesis and inflammation response in ox-LDL-treated Raw264.7 cells by up-regulating miR-130b. Mol Immunol 93:107–114. https://doi.org/10.1016/j.molimm.2017.11.017

    Article  CAS  PubMed  Google Scholar 

  68. Schwartz SM, Murry CE (1998) Proliferation and the monoclonal origins of atherosclerotic lesions. Annu Rev Med 49:437–460. https://doi.org/10.1146/annurev.med.49.1.437

    Article  CAS  PubMed  Google Scholar 

  69. Campbell JH, Campbell GR (1994) The role of smooth muscle cells in atherosclerosis. Curr Opin Lipidol 5:323–330. https://doi.org/10.1097/00041433-199410000-00003

    Article  CAS  PubMed  Google Scholar 

  70. Sun Y et al (2019) LncRNA H19 promotes vascular inflammation and abdominal aortic aneurysm formation by functioning as a competing endogenous RNA. J Mol Cell Cardiol 131:66–81. https://doi.org/10.1016/j.yjmcc.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  71. Pan JX (2017) LncRNA H19 promotes atherosclerosis by regulating MAPK and NF-kB signaling pathway. Eur Rev Med Pharmacol Sci 21:322–328

    PubMed  Google Scholar 

  72. Ahmed ASI et al (2018) Long noncoding RNA NEAT1 (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells. Proc Natl Acad Sci U S A 115:E8660–E8667. https://doi.org/10.1073/pnas.1803725115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu G et al (2014) LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation 130:1452–1465. https://doi.org/10.1161/CIRCULATIONAHA.114.011675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guevara NV, Kim HS, Antonova EI, Chan L (1999) The absence of p53 accelerates atherosclerosis by increasing cell proliferation in vivo. Nat Med 5:335–339. https://doi.org/10.1038/6585

    Article  CAS  PubMed  Google Scholar 

  75. Bell RD et al (2014) Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA. Arterioscler Thromb Vasc Biol 34:1249–1259. https://doi.org/10.1161/ATVBAHA.114.303240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ballantyne MD et al (2016) Smooth muscle enriched long noncoding RNA (SMILR) regulates cell proliferation. Circulation 133:2050–2065. https://doi.org/10.1161/CIRCULATIONAHA.115.021019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Reglero-Real N, Colom B, Bodkin JV, Nourshargh S (2016) Endothelial cell junctional adhesion molecules: role and regulation of expression in inflammation. Arterioscler Thromb Vasc Biol 36:2048–2057. https://doi.org/10.1161/ATVBAHA.116.307610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Huang Y, Wang L, Mao Y, Nan G (2019) Long noncoding RNA-H19 contributes to atherosclerosis and induces ischemic stroke via the upregulation of acid phosphatase 5. Front Neurol 10:32. https://doi.org/10.3389/fneur.2019.00032

    Article  PubMed  PubMed Central  Google Scholar 

  79. Voellenkle C et al (2016) Implication of long noncoding RNAs in the endothelial cell response to hypoxia revealed by RNA-sequencing. Sci Rep 6:24141. https://doi.org/10.1038/srep24141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhu A, Chu L, Ma Q, Li Y (2019) Long non-coding RNA H19 down-regulates miR-181a to facilitate endothelial angiogenic function. Artif Cells Nanomed Biotechnol 47:2698–2705. https://doi.org/10.1080/21691401.2019.1634577

    Article  CAS  PubMed  Google Scholar 

  81. Hofmann P et al (2019) Long non-coding RNA H19 regulates endothelial cell aging via inhibition of STAT3 signalling. Cardiovasc Res 115:230–242. https://doi.org/10.1093/cvr/cvy206

    Article  CAS  PubMed  Google Scholar 

  82. Michalik KM et al (2014) Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 114:1389–1397. https://doi.org/10.1161/CIRCRESAHA.114.303265

    Article  CAS  PubMed  Google Scholar 

  83. Trapani L, Segatto M, Pallottini V (2012) Regulation and deregulation of cholesterol homeostasis: the liver as a metabolic “power station”. World J Hepatol 4:184–190. https://doi.org/10.4254/wjh.v4.i6.184

    Article  PubMed  PubMed Central  Google Scholar 

  84. Qin W et al (2016) A long non-coding RNA, APOA4-AS, regulates APOA4 expression depending on HuR in mice. Nucleic Acids Res 44:6423–6433. https://doi.org/10.1093/nar/gkw341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Halley P et al (2014) Regulation of the apolipoprotein gene cluster by a long noncoding RNA. Cell Rep 6:222–230. https://doi.org/10.1016/j.celrep.2013.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang Z et al (2020) Collaborative interactions of heterogenous ribonucleoproteins contribute to transcriptional regulation of sterol metabolism in mice. Nat Commun 11:984. https://doi.org/10.1038/s41467-020-14711-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lan X et al (2015) Identification of differentially expressed genes related to metabolic syndrome induced with high-fat diet in E3 rats. Exp Biol Med 240:235–241. https://doi.org/10.1177/1535370214554531

    Article  CAS  Google Scholar 

  88. Lan X et al (2016) A novel long noncoding RNA Lnc-HC binds hnRNPA2B1 to regulate expressions of Cyp7a1 and Abca1 in hepatocytic cholesterol metabolism. Hepatology 64:58–72. https://doi.org/10.1002/hep.28391

    Article  CAS  PubMed  Google Scholar 

  89. Lan X et al (2019) Long noncoding RNA lnc-HC regulates PPARgamma-mediated hepatic lipid metabolism through miR-130b-3p. Mol Ther Nucleic Acids 18:954–965. https://doi.org/10.1016/j.omtn.2019.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu X et al (2018) Long non-coding RNA NEAT1-modulated abnormal lipolysis via ATGL drives hepatocellular carcinoma proliferation. Mol Cancer 17:90. https://doi.org/10.1186/s12943-018-0838-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jin SS, Lin XF, Zheng JZ, Wang Q, Guan HQ (2019) LncRNA NEAT1 regulates fibrosis and inflammatory response induced by nonalcoholic fatty liver by regulating miR-506/GLI3. Eur Cytokine Netw 30:98–106. https://doi.org/10.1684/ecn.2019.0432

    Article  CAS  PubMed  Google Scholar 

  92. Javidan A et al (2019) miR-146a deficiency accelerates hepatic inflammation without influencing diet-induced obesity in mice. Sci Rep 9:12626. https://doi.org/10.1038/s41598-019-49090-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Huang H et al (2018) Rho-kinase/AMPK axis regulates hepatic lipogenesis during overnutrition. J Clin Invest 128:5335–5350. https://doi.org/10.1172/JCI63562

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chen X, Tan XR, Li SJ, Zhang XX (2019) LncRNA NEAT1 promotes hepatic lipid accumulation via regulating miR-146a-5p/ROCK1 in nonalcoholic fatty liver disease. Life Sci 235:116829. https://doi.org/10.1016/j.lfs.2019.116829

    Article  CAS  PubMed  Google Scholar 

  95. Qu L et al (2016) Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell 29:653–668. https://doi.org/10.1016/j.ccell.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  96. Li Y, Ye Y, Feng B, Qi Y (2017) Long noncoding RNA lncARSR promotes doxorubicin resistance in hepatocellular carcinoma via modulating PTEN-PI3K/Akt pathway. J Cell Biochem 118:4498–4507. https://doi.org/10.1002/jcb.26107

    Article  CAS  PubMed  Google Scholar 

  97. Zhang M, Chi X, Qu N, Wang C (2018) Long noncoding RNA lncARSR promotes hepatic lipogenesis via Akt/SREBP-1c pathway and contributes to the pathogenesis of nonalcoholic steatohepatitis. Biochem Biophys Res Commun 499:66–70. https://doi.org/10.1016/j.bbrc.2018.03.127

    Article  CAS  PubMed  Google Scholar 

  98. Chi Y, Gong Z, Xin H, Wang Z, Liu Z (2020) Long noncoding RNA lncARSR promotes nonalcoholic fatty liver disease and hepatocellular carcinoma by promoting YAP1 and activating the IRS2/AKT pathway. J Transl Med 18:126. https://doi.org/10.1186/s12967-020-02225-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jeong SH et al (2018) Hippo-mediated suppression of IRS2/AKT signaling prevents hepatic steatosis and liver cancer. J Clin Invest 128:1010–1025. https://doi.org/10.1172/JCI95802

    Article  PubMed  PubMed Central  Google Scholar 

  100. Li D et al (2017) Identification of a novel human long non-coding RNA that regulates hepatic lipid metabolism by inhibiting SREBP-1c. Int J Biol Sci 13:349–357. https://doi.org/10.7150/ijbs.16635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Waris G, Felmlee DJ, Negro F, Siddiqui A (2007) Hepatitis C virus induces proteolytic cleavage of sterol regulatory element binding proteins and stimulates their phosphorylation via oxidative stress. J Virol 81:8122–8130. https://doi.org/10.1128/JVI.00125-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li D et al (2018) Long noncoding RNA HR1 participates in the expression of SREBP1c through phosphorylation of the PDK1/AKT/FoxO1 pathway. Mol Med Rep 18:2850–2856. https://doi.org/10.3892/mmr.2018.9278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Puthanveetil P, Chen S, Feng B, Gautam A, Chakrabarti S (2015) Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J Cell Mol Med 19:1418–1425. https://doi.org/10.1111/jcmm.12576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yan B et al (2014) Aberrant expression of long noncoding RNAs in early diabetic retinopathy. Invest Ophthalmol Vis Sci 55:941–951. https://doi.org/10.1167/iovs.13-13221

    Article  CAS  PubMed  Google Scholar 

  105. Watts R et al (2014) Myostatin inhibits proliferation and insulin-stimulated glucose uptake in mouse liver cells. Biochem Cell Biol 92:226–234. https://doi.org/10.1139/bcb-2014-0004

    Article  CAS  PubMed  Google Scholar 

  106. Yan C, Chen J, Chen N (2016) Long noncoding RNA MALAT1 promotes hepatic steatosis and insulin resistance by increasing nuclear SREBP-1c protein stability. Sci Rep 6:22640. https://doi.org/10.1038/srep22640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yang L et al (2016) Integrative transcriptome analyses of metabolic responses in mice define pivotal lncRNA metabolic regulators. Cell Metab 24:627–639. https://doi.org/10.1016/j.cmet.2016.08.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Li P et al (2015) A liver-enriched long non-coding RNA, lncLSTR, regulates systemic lipid metabolism in mice. Cell Metab 21:455–467. https://doi.org/10.1016/j.cmet.2015.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rohrig H, Schmidt J, Miklashevichs E, Schell J, John M (2002) Soybean ENOD40 encodes two peptides that bind to sucrose synthase. Proc Natl Acad Sci U S A 99:1915–1920. https://doi.org/10.1073/pnas.022664799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sousa ME, Farkas MH (2018) Micropeptide. PLoS Genet 14:e1007764. https://doi.org/10.1371/journal.pgen.1007764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Calviello L, Ohler U (2017) Beyond read-counts: Ribo-seq data analysis to understand the functions of the transcriptome. Trends Genet 33:728–744. https://doi.org/10.1016/j.tig.2017.08.003

    Article  CAS  PubMed  Google Scholar 

  112. Andrews SJ, Rothnagel JA (2014) Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet 15:193–204. https://doi.org/10.1038/nrg3520

    Article  CAS  PubMed  Google Scholar 

  113. Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 7:1534–1550. https://doi.org/10.1038/nprot.2012.086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223. https://doi.org/10.1126/science.1168978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147:789–802. https://doi.org/10.1016/j.cell.2011.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Samandi S et al (2017) Deep transcriptome annotation enables the discovery and functional characterization of cryptic small proteins. eLife 6:e27860. https://doi.org/10.7554/eLife.27860

    Article  PubMed  PubMed Central  Google Scholar 

  117. van Heesch S et al (2019) The translational landscape of the human heart. Cell 178:242–260.e229. https://doi.org/10.1016/j.cell.2019.05.010

    Article  CAS  PubMed  Google Scholar 

  118. Brunet MA et al (2019) OpenProt: a more comprehensive guide to explore eukaryotic coding potential and proteomes. Nucleic Acids Res 47:D403–D410. https://doi.org/10.1093/nar/gky936

    Article  CAS  PubMed  Google Scholar 

  119. Spencer HL et al (2020) The LINC00961 transcript and its encoded micropeptide SPAAR regulate endothelial cell function. Cardiovasc Res 116(12):1981–1994. https://doi.org/10.1093/cvr/cvaa008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Holdt LM et al (2010) ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol 30:620–627. https://doi.org/10.1161/ATVBAHA.109.196832

    Article  CAS  PubMed  Google Scholar 

  121. Holdt LM et al (2013) Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet 9:e1003588. https://doi.org/10.1371/journal.pgen.1003588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Holdt LM et al (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429. https://doi.org/10.1038/ncomms12429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang F, Lupski JR (2015) Non-coding genetic variants in human disease. Hum Mol Genet 24:R102–R110. https://doi.org/10.1093/hmg/ddv259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Skuratovskaia D, Vulf M, Komar A, Kirienkova E, Litvinova L (2019) Promising directions in atherosclerosis treatment based on epigenetic regulation using microRNAs and long noncoding RNAs. Biomol Ther 9:226. https://doi.org/10.3390/biom9060226

    Article  CAS  Google Scholar 

  125. Jarinova O et al (2009) Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler Thromb Vasc Biol 29:1671–1677. https://doi.org/10.1161/ATVBAHA.109.189522

    Article  CAS  PubMed  Google Scholar 

  126. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678. https://doi.org/10.1038/nature05911

    Article  CAS  Google Scholar 

  127. Abdullah KG et al (2008) Four SNPS on chromosome 9p21 confer risk to premature, familial CAD and MI in an American Caucasian population (GeneQuest). Ann Hum Genet 72:654–657. https://doi.org/10.1111/j.1469-1809.2008.00454.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Motterle A et al (2012) Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells. Hum Mol Genet 21:4021–4029. https://doi.org/10.1093/hmg/dds224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cheng J et al (2017) Variants in ANRIL gene correlated with its expression contribute to myocardial infarction risk. Oncotarget 8:12607–12619. https://doi.org/10.18632/oncotarget.14721

    Article  PubMed  PubMed Central  Google Scholar 

  130. Burd CE et al (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6:e1001233. https://doi.org/10.1371/journal.pgen.1001233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Folkersen L et al (2009) Relationship between CAD risk genotype in the chromosome 9p21 locus and gene expression. Identification of eight new ANRIL splice variants. PLoS One 4:e7677. https://doi.org/10.1371/journal.pone.0007677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gil J, Peters G (2006) Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 7:667–677. https://doi.org/10.1038/nrm1987

    Article  CAS  PubMed  Google Scholar 

  133. Douvris A et al (2014) Functional analysis of the TRIB1 associated locus linked to plasma triglycerides and coronary artery disease. J Am Heart Assoc 3:e000884. https://doi.org/10.1161/JAHA.114.000884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. The CARDIoGRAMplusC4D Consortium et al (2013) Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 45:25–33. https://doi.org/10.1038/ng.2480

    Article  CAS  Google Scholar 

  135. Bauer RC, Yenilmez BO, Rader DJ (2015) Tribbles-1: a novel regulator of hepatic lipid metabolism in humans. Biochem Soc Trans 43:1079–1084. https://doi.org/10.1042/BST20150101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Johnston JM et al (2019) Myeloid Tribbles 1 induces early atherosclerosis via enhanced foam cell expansion. Sci Adv 5:eaax9183. https://doi.org/10.1126/sciadv.aax9183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang QH, Yin RX, Chen WX, Cao XL, Wu JZ (2019) TRIB1 and TRPS1 variants, G x G and G x E interactions on serum lipid levels, the risk of coronary heart disease and ischemic stroke. Sci Rep 9:2376. https://doi.org/10.1038/s41598-019-38765-7

    Article  PubMed  PubMed Central  Google Scholar 

  138. Ohnishi Y et al (2000) Identification of 187 single nucleotide polymorphisms (SNPs) among 41 candidate genes for ischemic heart disease in the Japanese population. Hum Genet 106:288–292

    Article  CAS  PubMed  Google Scholar 

  139. Ishii N et al (2006) Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet 51:1087–1099. https://doi.org/10.1007/s10038-006-0070-9

    Article  CAS  PubMed  Google Scholar 

  140. Eicher JD et al (2016) Characterization of the platelet transcriptome by RNA sequencing in patients with acute myocardial infarction. Platelets 27:230–239. https://doi.org/10.3109/09537104.2015.1083543

    Article  CAS  PubMed  Google Scholar 

  141. Mitchel K et al (2016) RP1-13D10.2 is a novel modulator of statin-induced changes in cholesterol. Circ Cardiovasc Genet 9:223–230. https://doi.org/10.1161/CIRCGENETICS.115.001274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chasman DI et al (2012) Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: the Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial. Circ Cardiovasc Genet 5:257–264. https://doi.org/10.1161/CIRCGENETICS.111.961144

    Article  CAS  PubMed  Google Scholar 

  143. Li C et al (2019) Regulation of cholesterol homeostasis by a novel long non-coding RNA LASER. Sci Rep 9:7693. https://doi.org/10.1038/s41598-019-44195-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Martignano F et al (2017) Urinary RNA-based biomarkers for prostate cancer detection. Clin Chim Acta 473:96–105. https://doi.org/10.1016/j.cca.2017.08.009

    Article  CAS  PubMed  Google Scholar 

  145. Li Q et al (2015) Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol 36:2007–2012. https://doi.org/10.1007/s13277-014-2807-y

    Article  CAS  PubMed  Google Scholar 

  146. Lin Y, Leng Q, Zhan M, Jiang F (2018) A plasma long noncoding RNA signature for early detection of lung cancer. Transl Oncol 11:1225–1231. https://doi.org/10.1016/j.tranon.2018.07.016

    Article  PubMed  PubMed Central  Google Scholar 

  147. Sun Z et al (2018) Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. Mol Cancer 17:82. https://doi.org/10.1186/s12943-018-0831-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Aghabozorgi AS et al (2019) Circulating exosomal miRNAs in cardiovascular disease pathogenesis: new emerging hopes. J Cell Physiol 234:21796–21809. https://doi.org/10.1002/jcp.28942

    Article  CAS  PubMed  Google Scholar 

  149. Kumarswamy R et al (2014) Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res 114:1569–1575. https://doi.org/10.1161/CIRCRESAHA.114.303915

    Article  CAS  PubMed  Google Scholar 

  150. Zhang Z et al (2017) Increased plasma levels of lncRNA H19 and LIPCAR are associated with increased risk of coronary artery disease in a Chinese population. Sci Rep 7:7491. https://doi.org/10.1038/s41598-017-07611-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Omura J et al (2020) Identification of the long non-coding RNA H19 as a new biomarker and therapeutic target in right ventricular failure in pulmonary arterial hypertension. Circulation 142(15):1464–1484. https://doi.org/10.1161/CIRCULATIONAHA.120.047626

    Article  CAS  PubMed  Google Scholar 

  152. Li L et al (2018) Characterization of lncRNA expression profile and identification of novel lncRNA biomarkers to diagnose coronary artery disease. Atherosclerosis 275:359–367. https://doi.org/10.1016/j.atherosclerosis.2018.06.866

    Article  CAS  PubMed  Google Scholar 

  153. Song N et al (2020) Construction and analysis for differentially expressed long non-coding RNAs and mRNAs in acute myocardial infarction. Sci Rep 10:6989. https://doi.org/10.1038/s41598-020-63840-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yang Y et al (2015) Plasma long non-coding RNA, CoroMarker, a novel biomarker for diagnosis of coronary artery disease. Clin Sci 129:675–685. https://doi.org/10.1042/CS20150121

    Article  CAS  Google Scholar 

  155. Chen L et al (2016) Global transcriptomic study of atherosclerosis development in rats. Gene 592:43–48. https://doi.org/10.1016/j.gene.2016.07.023

    Article  CAS  PubMed  Google Scholar 

  156. Chen L et al (2017) Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis. PLoS One 12:e0185406. https://doi.org/10.1371/journal.pone.0185406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wu J et al (2019) Aberrant expression of serum circANRIL and hsa_circ_0123996 in children with Kawasaki disease. J Clin Lab Anal 33:e22874. https://doi.org/10.1002/jcla.22874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433. https://doi.org/10.1038/ncb2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tabet F et al (2016) High-density lipoprotein-associated miR-223 is altered after diet-induced weight loss in overweight and obese males. PLoS One 11:e0151061. https://doi.org/10.1371/journal.pone.0151061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sedgeman LR et al (2019) Beta cell secretion of miR-375 to HDL is inversely associated with insulin secretion. Sci Rep 9:3803. https://doi.org/10.1038/s41598-019-40338-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hamer M, O’Donovan G, Stamatakis E (2018) High-density lipoprotein cholesterol and mortality: too much of a good thing? Arterioscler Thromb Vasc Biol 38:669–672. https://doi.org/10.1161/ATVBAHA.117.310587

    Article  CAS  PubMed  Google Scholar 

  162. Soria-Florido MT et al (2020) Dysfunctional HDLs are associated with a greater incidence of acute coronary syndrome in a population at high cardiovascular risk: a nested-case control study. Circulation 141(6):444–453. https://doi.org/10.1161/CIRCULATIONAHA.119.041658

    Article  CAS  PubMed  Google Scholar 

  163. Kirk JM et al (2018) Functional classification of long non-coding RNAs by k-mer content. Nat Genet 50:1474–1482. https://doi.org/10.1038/s41588-018-0207-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gilbert LA et al (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661. https://doi.org/10.1016/j.cell.2014.09.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth J. Hennessy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hennessy, E.J. (2022). LncRNAs and Cardiovascular Disease. In: Carpenter, S. (eds) Long Noncoding RNA. Advances in Experimental Medicine and Biology, vol 1363. Springer, Cham. https://doi.org/10.1007/978-3-030-92034-0_5

Download citation

Publish with us

Policies and ethics