Skip to main content

Introduction and Overview

  • Chapter
  • First Online:
Long Noncoding RNA

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1363))

Abstract

As sequencing technologies improved, new classes of genes were uncovered. Initially, many of these were considered non-functional given their low protein-coding potential but have now emerged as important regulators of biological processes. One of the new classes of genes are called long noncoding RNAs (lncRNAs). LncRNAs are the largest group of transcribed RNA. As their name suggests, they are non-protein coding genes. To differentiate them from other smaller, noncoding RNAs, lncRNAs are transcripts whose length are greater than 200 nucleotides. According to GENCODE Release 38, there are approximately 18,000 lncRNAs, of which only 4% have a known function. Of the lncRNAs characterized, many of them play regulatory roles in many biological processes, including regulation of gene expression, alternative splicing, chromatin modification, protein activity, and posttranscriptional mechanisms. Compared to protein coding genes, lncRNAs show high cell type specificity. Many lncRNAs have been shown to be expressed in distinct immune cell populations and play RNA-mediated immune-regulatory roles. Many aspects of the immune response, including the duration, magnitude, and subsequent return to homeostasis are carefully controlled. Dysregulation of lncRNAs can result in an uncontrolled immune response, which can lead to a variety of immune-related diseases. This introduction aims to summarize the chapters highlighting the discovery of lncRNAs, their role in the immune response, and their functional characterization, either through interaction with DNA, RNA, and/or proteins in distinct immune cell populations or cells implicated in immune-related diseases. Additionally, the immune regulatory role of lncRNAs will be covered, and how lncRNA localization, sequence and secondary structure can inform function. Delving into this largely unexplored field can identify lncRNAs as potential therapeutic targets.

This opening chapter will review the basics of long noncoding RNA and the field of innate immunity and provide an overview of the book and the contents of the individual chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crick F (1970) Central dogma of molecular biology. Nature 227:561–563

    Article  CAS  PubMed  Google Scholar 

  2. Bertone P, Stolc V, Royce TE et al (2004) Global identification of human transcribed sequences with genome tiling arrays. Science 306:2242–2246

    Article  CAS  PubMed  Google Scholar 

  3. Carninci P, Kasukawa T, Katayama S et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

    Article  CAS  PubMed  Google Scholar 

  4. Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  6. Statello L, Guo C-J, Chen L-L, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22:96–118

    Article  CAS  PubMed  Google Scholar 

  7. Anderson DM, Anderson KM, Chang C-L et al (2015) A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160:595–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, Saghatelian A, Nakayama KI, Clohessy JG, Pandolfi PP (2017) mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature 541:228–232

    Article  CAS  PubMed  Google Scholar 

  9. Jackson R, Kroehling L, Khitun A et al (2018) The translation of non-canonical open reading frames controls mucosal immunity. Nature 564:434–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khalil AM, Guttman M, Huarte M et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106:11667–11672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kotzin JJ, Spencer SP, McCright SJ et al (2016) The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan. Nature 537:239–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khan MR, Wellinger RJ, Laurent B (2021) Exploring the alternative splicing of long noncoding RNAs. Trends Genet. https://doi.org/10.1016/j.tig.2021.03.010

  13. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159

    Article  CAS  PubMed  Google Scholar 

  14. Faghihi MA, Wahlestedt C (2009) Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 10:637–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Whitehead J, Pandey GK, Kanduri C (2009) Regulation of the mammalian epigenome by long noncoding RNAs. Biochim Biophys Acta 1790:936–947

    Article  CAS  PubMed  Google Scholar 

  16. Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johnsson P, Lipovich L, Grandér D, Morris KV (2014) Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta 1840:1063–1071

    Article  CAS  PubMed  Google Scholar 

  18. Vollmers AC, Covarrubias S, Kuang D et al (2021) A conserved long noncoding RNA, GAPLINC, modulates the immune response during endotoxic shock. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.2016648118

  19. Novikova IV, Hennelly SP, Tung C-S, Sanbonmatsu KY (2013) Rise of the RNA machines: exploring the structure of long non-coding RNAs. J Mol Biol 425:3731–3746

    Article  CAS  PubMed  Google Scholar 

  20. Atianand MK, Fitzgerald KA (2014) Long non-coding RNAs and control of gene expression in the immune system. Trends Mol Med 20:623–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Satpathy AT, Chang HY (2015) Long noncoding RNA in hematopoiesis and immunity. Immunity 42:792–804

    Article  CAS  PubMed  Google Scholar 

  22. Liu SJ, Horlbeck MA, Cho SW et al (2017) CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science. https://doi.org/10.1126/science.aah7111

  23. Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carpenter S, Aiello D, Atianand MK et al (2013) A long noncoding RNA mediates both activation and repression of immune response genes. Science 341:789–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Farh KK-H, Marson A, Zhu J et al (2015) Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518:337–343

    Article  CAS  PubMed  Google Scholar 

  26. Tak YG, Farnham PJ (2015) Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics Chromatin 8:57

    Article  PubMed  PubMed Central  Google Scholar 

  27. Castellanos-Rubio A, Ghosh S (2019) Disease-associated SNPs in inflammation-related lncRNAs. Front Immunol 10:420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buckland PR (2004) Allele-specific gene expression differences in humans. Hum Mol Genet 13(Spec No 2):R255–R260

    Google Scholar 

  29. Wang D, Sadee W (2016) CYP3A4 intronic SNP rs35599367 (CYP3A4*22) alters RNA splicing. Pharmacogenet Genomics 26:40–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thomas LF, Sætrom P (2012) Single nucleotide polymorphisms can create alternative polyadenylation signals and affect gene expression through loss of microRNA-regulation. PLoS Comput Biol 8:e1002621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Carpenter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vollmers, A., Carpenter, S. (2022). Introduction and Overview. In: Carpenter, S. (eds) Long Noncoding RNA. Advances in Experimental Medicine and Biology, vol 1363. Springer, Cham. https://doi.org/10.1007/978-3-030-92034-0_1

Download citation

Publish with us

Policies and ethics