Abstract
Recent progress in quantitative ultrasound have sparked increasing interest towards the measurement of long cortical bones (e.g., radius or tibia), because their ability to sustain loading and resist fractures is known to be related to their mechanical properties at different length scales. In particular, applying guided waves for the assessment of cortical bone is inspired by widely used techniques developed earlier in the field of nondestructive testing and evaluation of different waveguide structures. This approach is based on the experimental evidence that the cortex of long bones can act as a natural waveguide for ultrasound, despite its irregular geometry, attenuation, and heterogeneous material properties. Because guided waves could yield the characterization of several bone properties (e.g., cortical thickness, anisotropic stiffness or porosity) at the mesoscopic level by fitting the dispersion characteristics of a waveguide model to the measured dispersion curves (i.e., solving an inverse problem), this method has a strong clinical potential as a tool for bone status assessment. This chapter revisits the roadmap that allowed the so-called bidirectional axial transmission technique to progress from a pure laboratory concept to a diagnostic tool of clinical interest over the second decade of the twenty-first century and discusses the current clinical challenges associated with cortical bone characterization by ultrasound guided waves.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdoulatuf, A., Nguyen, V.-H., Desceliers, C., & Naili, S. (2017). A numerical study of ultrasonic response of random cortical bone plates. Vietnam Journal of Mechanics, 39(1), 79–95. https://doi.org/10.15625/0866-7136/9342
Abid, A., Pereira, D., Fernandes, J., & Belanger, P. (2017). Sensitivity study of ultrasonic guided waves to cortical bone mechanical properties with axial and circumferential propagation. Acta Acustica United with Acustica, 103(3), 421–429. https://doi.org/10.3813/AAA.919072
Achenbach, J. (2012). Wave propagation in elastic solids. Elsevier.
Ahmed, L. A., Shigdel, R., Joakimsen, R. M., Eldevik, O. P., Eriksen, E. F., Ghasem-Zadeh, A., Bala, Y., Zebaze, R., Seeman, E., & Bjørnerem, Å. (2015). Measurement of cortical porosity of the proximal femur improves identification of women with nonvertebral fragility fractures. Osteoporosis International, 26(8), 2137–2146. https://doi.org/10.1007/s00198-015-3118-x
Alleyne, D., & Cawley, P. (1991). A two-dimensional Fourier transform method for the measurement of propagating multimode signals. The Journal of the Acoustical Society of America, 89(3), 1159–1168. https://doi.org/10.1121/1.400530
Alvarenga, J., Fuller, H., Pasoto, S., & Pereira, R. (2017). Age-related reference curves of volumetric bone density, structure, and biomechanical parameters adjusted for weight and height in a population of healthy women: an HR-pQCT study. Osteoporosis International, 28(4), 1335–1346. https://doi.org/10.1007/s00198-016-3876-0
Augat, P., Reeb, H., & Claes, L. (1996). Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell. Journal of Bone and Mineral Research, 11(9), 1356–1363. https://doi.org/10.1002/jbmr.5650110921
Bai, L., Xu, K., Bochud, N., Ta, D., Hu, B., Laugier, P., & Minonzio, J.-G. (2016). Multichannel wideband mode-selective excitation of ultrasonic guided waves in long cortical bone. In IEEE Int Ultrason Symp (pp. 1–4). https://doi.org/10.1109/ULTSYM.2016.7728774
Bala, Y., Bui, Q. M., Wang, X.-F., Iuliano, S., Wang, Q., Ghasem-Zadeh, A., Rozental, T. D., Bouxsein, M. L., Zebaze, R. M., & Seeman, E. (2015a). Trabecular and cortical microstructure and fragility of the distal radius in women. Journal of Bone and Mineral Research, 30(4), 621–629. https://doi.org/10.1002/jbmr.2388
Bala, Y., Zebaze, R., Ghasem-Zadeh, A., Atkinson, E. J., Iuliano, S., Peterson, J. M., Amin, S., Bjørnerem, Å., Melton III, L. J., Johansson, H., et al. (2014). Cortical porosity identifies women with osteopenia at increased risk for forearm fractures. Journal of Bone and Mineral Research, 29(6), 1356–1362. https://doi.org/10.1002/jbmr.2167
Bala, Y., Zebaze, R., and Seeman, E. (2015b). Role of cortical bone in bone fragility. Current Opinion in Rheumatology, 27(4), 406–413. https://doi.org/10.1097/BOR.0000000000000183
Barkmann, R., Kantorovich, E., Singal, C., Hans, D., Genant, H. K., Heller, M., and Glüer, C.-C. (2000). A new method for quantitative ultrasound measurements at multiple skeletal sites: first results of precision and fracture discrimination. Journal of Clinical Densitometry, 3(1), 1–7. https://doi.org/10.1385/JCD:3:1:001
Baron, C. (2012). Using the gradient of human cortical bone properties to determine age-related bone changes via ultrasonic guided waves. Ultrasound in Medicine & Biology, 38(6), 972–981. https://doi.org/10.1016/j.ultrasmedbio.2012.02.024
Baron, C., & Naili, S. (2010). Propagation of elastic waves in a fluid-loaded anisotropic functionally graded waveguide: Application to ultrasound characterization. The Journal of the Acoustical Society of America, 127(3), 1307–1317. https://doi.org/10.1121/1.3292949
Baron, C., Talmant, M., & Laugier, P. (2007). Effect of porosity on effective diagonal stiffness coefficients (c ii) and elastic anisotropy of cortical bone at 1 MHz: a finite-difference time domain study. The Journal of the Acoustical Society of America, 122(3), 1810–1817. https://doi.org/10.1121/1.2759165
Bernard, S., Schneider, J., Varga, P., Laugier, P., Raum, K., & Grimal, Q. (2016). Elasticity–density and viscoelasticity–density relationships at the tibia mid-diaphysis assessed from resonant ultrasound spectroscopy measurements. Biomechanics and Modeling in Mechanobiology, 15(1), 97–109. https://doi.org/10.1007/s10237-015-0689-6
Bigelow, E. M., Patton, D. M., Ward, F. S., Ciarelli, A., Casden, M., Clark, A., Goulet, R. W., Morris, M. D., Schlecht, S. H., Mandair, G. S., et al. (2019). External bone size is a key determinant of strength-decline trajectories of aging male radii. Journal of Bone and Mineral Research, 34(5), 825–837. https://doi.org/10.1002/jbmr.3661
Bochud, N., Laurent, J., Bruno, F., Royer, D., & Prada, C. (2018). Towards real-time assessment of anisotropic plate properties using elastic guided waves. The Journal of the Acoustical Society of America, 143(2), 1138–1147. https://doi.org/10.1121/1.5024353
Bochud, N., Vallet, Q., Bala, Y., Follet, H., Minonzio, J., & Laugier, P. (2016). Genetic algorithms-based inversion of multimode guided waves for cortical bone characterization. Physics in Medicine & Biology, 61(19), 6953. https://doi.org/10.1088/0031-9155/61/19/6953
Bochud, N., Vallet, Q., Minonzio, J.-G., & Laugier, P. (2017). Predicting bone strength with ultrasonic guided waves. Scientific Reports, 7(1), 1–14. https://doi.org/10.1038/srep43628
Bossy, E., Talmant, M., Defontaine, M., Patat, F., & Laugier, P. (2004a). Bidirectional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test materials. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51(1), 71–79. https://doi.org/10.1109/TUFFC.2004.1268469
Bossy, E., Talmant, M., & Laugier, P. (2002). Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: A 2D simulation study. The Journal of the Acoustical Society of America, 112(1), 297–307. https://doi.org/10.1121/1.1480836
Bossy, E., Talmant, M., & Laugier, P. (2004b). Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models. The Journal of the Acoustical Society of America, 115(5), 2314–2324. https://doi.org/10.1121/1.1689960
Boutroy, S., Khosla, S., Sornay-Rendu, E., Zanchetta, M. B., McMahon, D. J., Zhang, C. A., Chapurlat, R. D., Zanchetta, J., Stein, E. M., Bogado, C., et al. (2016). Microarchitecture and peripheral BMD are impaired in postmenopausal white women with fracture independently of total hip T-score: an international multicenter study. Journal of Bone and Mineral Research, 31(6), 1158–1166. https://doi.org/10.1002/jbmr.2796
Briot, K., Paternotte, S., Kolta, S., Eastell, R., Felsenberg, D., Reid, D. M., Glüer, C.-C., & Roux, C. (2013). FRAX®: prediction of major osteoporotic fractures in women from the general population: the OPUS study. PLoS One, 8(12), e83436. https://doi.org/10.1371/journal.pone.0083436
Bustamante, L., Saeki, M., & Matsukawa, M. (2019). Characterization of shear waves in cortical bone using the axial transmission technique. Japanese Journal of Applied Physics, 58(SG), SGGE20. https://doi.org/10.7567/1347-4065/ab19b3
Cai, X., Brenner, R., Peralta, L., Olivier, C., Gouttenoire, P.-J., Chappard, C., Peyrin, F., Cassereau, D., Laugier, P., & Grimal, Q. (2019a). Homogenization of cortical bone reveals that the organization and shape of pores marginally affect elasticity. Journal of the Royal Society Interface, 16(151), 20180911. https://doi.org/10.1098/rsif.2018.0911
Cai, X., Follet, H., Peralta, L., Gardegaront, M., Farlay, D., Gauthier, R., Yu, B., Gineyts, E., Olivier, C., Langer, M., et al. (2019b). Anisotropic elastic properties of human femoral cortical bone and relationships with composition and microstructure in elderly. Acta Biomaterialia, 90, 254–266. https://doi.org/10.1016/j.actbio.2019.03.043
Cai, X., Peralta, L., Brenner, R., Iori, G., Cassereau, D., Raum, K., Laugier, P., & Grimal, Q. (2020). Anisotropic elastic properties of human cortical bone tissue inferred from inverse homogenization and resonant ultrasound spectroscopy. Materialia, 11, 100730. https://doi.org/10.1016/j.mtla.2020.100730
Chen, J., Cheng, L., Su, Z., & Qin, L. (2013). Modeling elastic waves in coupled media: Estimate of soft tissue influence and application to quantitative ultrasound. Ultrasonics, 53(2), 350–362. https://doi.org/10.1016/j.ultras.2012.06.018
Chen, J., Foiret, J., Minonzio, J.-G., Talmant, M., Su, Z., Cheng, L., & Laugier, P. (2012). Measurement of guided mode wavenumbers in soft tissue–bone mimicking phantoms using ultrasonic axial transmission. Physics in Medicine & Biology, 57(10), 3025. https://doi.org/10.1088/0031-9155/57/10/3025
Chiachío, J., Bochud, N., Chiachío, M., Cantero, S., & Rus, G. (2017). A multilevel Bayesian method for ultrasound-based damage identification in composite laminates. Mechanical Systems and Signal Processing, 88, 462–477. https://doi.org/10.1016/j.ymssp.2016.09.035
Chiba, K., Suetoshi, R., Cretin, D., Arai, T., Kawajiri, T., Okayama, A., Tsuji, S., Okazaki, N., Osaki, M., & Yoh, K. (2020). Development of a QUS device to evaluate deterioration of cortical bone: Verification by HR-pQCT and measurements in healthy individuals and dialysis patients. Journal of Clinical Densitometry. https://doi.org/10.1016/j.jocd.2020.02.002
Chimenti, D. (1997). Guided waves in plates and their use in materials characterization. Applied Mechanics Reviews, 50, 247–284. https://doi.org/10.1115/1.3101707
Dahmen, S., Ketata, H., Ghozlen, M. H. B., & Hosten, B. (2010). Elastic constants measurement of anisotropic Olivier wood plates using air-coupled transducers generated Lamb wave and ultrasonic bulk wave. Ultrasonics, 50(4–5), 502–507. https://doi.org/10.1016/j.ultras.2009.10.014
Datta, A. K., Shah, A. H., & Karunasena, W. (1999). Ultrasonic waves and material and defect characterization in composite plates. Mechanics of Composite Materials and Structures, 6(4), 285–300. https://doi.org/10.1080/107594199305467
Deán, J. L., Trillo, C., Doval, Á. F., & Fernández, J. L. (2008). Determination of thickness and elastic constants of aluminum plates from full-field wavelength measurements of single-mode narrowband Lamb waves. The Journal of the Acoustical Society of America, 124(3), 1477–1489. https://doi.org/10.1121/1.2945707
Denis, M., Wan, L., Fatemi, M., & Alizad, A. (2018). Ultrasound characterization of bone demineralization using a support vector machine. Ultrasound in Medicine & Biology, 44(3), 714–725. https://doi.org/10.1016/j.ultrasmedbio.2017.11.004
Desceliers, C., Soize, C., Naili, S., & Haïat, G. (2012). Probabilistic model of the human cortical bone with mechanical alterations in ultrasonic range. Mechanical Systems and Signal Processing, 32, 170–177. https://doi.org/10.1016/j.ymssp.2012.03.008
Diez-Perez, A., Güerri, R., Nogues, X., Cáceres, E., Peña, M. J., Mellibovsky, L., Randall, C., Bridges, D., Weaver, J. C., Proctor, A., et al. (2010). Microindentation for in vivo measurement of bone tissue mechanical properties in humans. Journal of Bone and Mineral Research, 25(8), 1877–1885. https://doi.org/10.1002/jbmr.73
Drémeau, A., Le Courtois, F., & Bonnel, J. (2017). Reconstruction of dispersion curves in the frequency-wavenumber domain using compressed sensing on a random array. IEEE Journal of Oceanic Engineering, 42(4), 914–922. https://doi.org/10.1109/JOE.2016.2644780
Dzene, I. Y., Dzenis, V., Petukhova, L., Tatarinov, A., & Yanson, A. Y. (1981). Human tibia in the presence of coxarthrosis and fracture using exponential ultrasonic concentrators. Mechanics of Composite Materials, 16(6), 724–729. https://doi.org/10.1007/BF00606265
Edwards, M., Robinson, D., Ward, K., Javaid, M., Walker-Bone, K., Cooper, C., & Dennison, E. (2016). Cluster analysis of bone microarchitecture from high resolution peripheral quantitative computed tomography demonstrates two separate phenotypes associated with high fracture risk in men and women. Bone, 88, 131–137. https://doi.org/10.1016/j.bone.2016.04.025
Egorov, V., Tatarinov, A., Sarvazyan, N., Wood, R., Magidenko, L., Amin, S., Khosla, S., Ruh, R. J., Ruh, J. M., & Sarvazyan, A. (2014). Osteoporosis detection in postmenopausal women using axial transmission multi-frequency bone ultrasonometer: Clinical findings. Ultrasonics, 54(5), 1170–1177. https://doi.org/10.1016/j.ultras.2013.08.017
Estrada, H., Gottschalk, S., Reiss, M., Neuschmelting, V., Goldbrunner, R., & Razansky, D. (2018). Observation of guided acoustic waves in a human skull. Ultrasound in Medicine & Biology, 44(11), 2388–2392. https://doi.org/10.1016/j.ultrasmedbio.2018.05.019
Fahim, A. A., Gallego, R., Bochud, N., & Rus, G. (2013). Model-based damage reconstruction in composites from ultrasound transmission. Composites Part B: Engineering, 45(1), 50–62. https://doi.org/10.1016/j.compositesb.2012.09.003
Fei, D., Chimenti, D., & Teles, S. V. (2003). Material property estimation in thin plates using focused, synthetic-aperture acoustic beams. The Journal of the Acoustical Society of America, 113(5), 2599–2610. https://doi.org/10.1121/1.1561496
Foiret, J., Minonzio, J.-G., Chappard, C., Talmant, M., & Laugier, P. (2014). Combined estimation of thickness and velocities using ultrasound guided waves: A pioneering study on in vitro cortical bone samples. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61(9), 1478–1488. https://doi.org/10.1109/TUFFC.2014.3062
Foldes, A., Rimon, A., Keinan, D., & Popovtzer, M. (1995). Quantitative ultrasound of the tibia: a novel approach for assessment of bone status. Bone, 17(4), 363–367. https://doi.org/10.1016/S8756-3282(95)00244-8
Geusens, P., Van Geel, T., Huntjens, K., Van Helden, S., Bours, S., & Van Den Bergh, J. (2011). Clinical fractures beyond low BMD. International Journal of Clinical Rheumatology, 6(4), 411. https://doi.org/10.2217/ijr.11.30
Granke, M., Grimal, Q., Saïed, A., Nauleau, P., Peyrin, F., & Laugier, P. (2011). Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women. Bone, 49(5), 1020–1026. https://doi.org/10.1016/j.bone.2011.08.002
Gräsel, M., Glüer, C.-C., & Barkmann, R. (2017). Characterization of a new ultrasound device designed for measuring cortical porosity at the human tibia: A phantom study. Ultrasonics, 76, 183–191. https://doi.org/10.1016/j.ultras.2017.01.001
Grimal, Q., & Laugier, P. (2019). Quantitative ultrasound assessment of cortical bone properties beyond bone mineral density. IRMB, 40(1), 16–24. https://doi.org/10.1016/j.irbm.2018.10.006
Gsell, D., & Dual, J. (2004). Non-destructive evaluation of elastic material properties in anisotropic circular cylindrical structures. Ultrasonics, 43(2), 123–132. https://doi.org/10.1016/j.ultras.2004.02.026
Haïat, G., Naili, S., Grimal, Q., Talmant, M., Desceliers, C., & Soize, C. (2009). Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: Application to axial transmission. The Journal of the Acoustical Society of America, 125(6), 4043–4052. https://doi.org/10.1121/1.3117445
Hans, D., Srivastav, S., Singal, C., Barkmann, R., Njeh, C., Kantorovich, E., Glüer, C., & Genant, H. (1999). Does combining the results from multiple bone sites measured by a new quantitative ultrasound device improve discrimination of hip fracture? Journal of Bone and Mineral Research, 14(4), 644–651. https://doi.org/10.1359/jbmr.1999.14.4.644
Holzer, G., Von Skrbensky, G., Holzer, L. A., & Pichl, W. (2009). Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. Journal of Bone and Mineral Research, 24(3), 468–474. https://doi.org/10.1359/jbmr.081108
Honarvar, F., Enjilela, E., & Sinclair, A. N. (2009). An alternative method for plotting dispersion curves. Ultrasonics, 49(1), 15–18. https://doi.org/10.1016/j.ultras.2008.07.002
Iori, G., Du, J., Hackenbeck, J., Kilappa, V., & Raum, K. (2020). Estimation of cortical bone microstructure from ultrasound backscatter. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68(4), 1081–1095. https://doi.org/10.1109/TUFFC.2020.3033050
Ishimoto, T., Suetoshi, R., Cretin, D., Hagihara, K., Hashimoto, J., Kobayashi, A., & Nakano, T. (2019). Quantitative ultrasound (QUS) axial transmission method reflects anisotropy in micro-arrangement of apatite crystallites in human long bones: A study with 3-MHz-frequency ultrasound. Bone, 127, 82–90. https://doi.org/10.1016/j.bone.2019.05.034
Jansons, E., Tatarinov, A., Dzenis, V., & Kregers, A. (1984). Constructional peculiarities of the human tibia defined by reference to ultrasound measurement data. Biomaterials, 5(4), 221–226. https://doi.org/10.1016/0142-9612(84)90019-X
Kanis, J., Johnell, O., Oden, A., Dawson, A., De Laet, C., & Jonsson, B. (2001). Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporosis International, 12(12), 989–995. https://doi.org/10.1007/s001980170006
Karim, M., Mal, A., & Bar-Cohen, Y. (1990). Inversion of leaky lamb wave data by simplex algorithm. The Journal of the Acoustical Society of America, 88(1), 482–491. https://doi.org/10.1121/1.399927
Karjalainen, J., Riekkinen, O., Töyräs, J., Jurvelin, J., & Kröger, H. (2016). New method for point-of-care osteoporosis screening and diagnostics. Osteoporosis International, 27(3), 971–977. https://doi.org/10.1007/s00198-015-3387-4
Karjalainen, J., Riekkinen, O., Toyras, J., Kroger, H., & Jurvelin, J. (2008). Ultrasonic assessment of cortical bone thickness in vitro and in vivo. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55(10), 2191–2197. https://doi.org/10.1109/TUFFC.918
Kaufman, J. J., Luo, G., & Siffert, R. S. (2008). Ultrasound simulation in bone. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55(6), 1205–1218. https://doi.org/10.1109/TUFFC.2008.784
Kilappa, V., Moilanen, P., Xu, L., Nicholson, P., Timonen, J., & Cheng, S. (2011). Low-frequency axial ultrasound velocity correlates with bone mineral density and cortical thickness in the radius and tibia in pre-and postmenopausal women. Osteoporosis International, 22(4), 1103–1113. https://doi.org/10.1007/s00198-010-1273-7
Knapp, K., Blake, G., Spector, T., & Fogelman, I. (2001). Multisite quantitative ultrasound: precision, age-and menopause-related changes, fracture discrimination, and T-score equivalence with dual-energy X-ray absorptiometry. Osteoporosis International, 12(6), 456–464. https://doi.org/10.1007/s001980170090
Knapp, K., Blake, G., Spector, T., & Fogelman, I. (2004). Can the WHO definition of osteoporosis be applied to multi-site axial transmission quantitative ultrasound? Osteoporosis International, 15(5), 367–374. https://doi.org/10.1007/s00198-003-1555-4
Kral, R., Osima, M., Borgen, T. T., Vestgaard, R., Richardsen, E., & Bjørnerem, Å. (2017). Increased cortical porosity and reduced cortical thickness of the proximal femur are associated with nonvertebral fracture independent of Fracture Risk Assessment Tool and Garvan estimates in postmenopausal women. PLoS One, 12(9), e0185363. https://doi.org/10.1371/journal.pone.0185363
Krestan, C. R., Grampp, S., Henk, C., Peloschek, P., & Imhof, H. (2004). Limited diagnostic agreement of quantitative sonography of the radius and phalanges with dual-energy X-ray absorptiometry of the spine, femur, and radius for diagnosis of osteoporosis. American Journal of Roentgenology, 183(3), 639–644. https://doi.org/10.2214/ajr.183.3.1830639
Kroker, A., Plett, R., Nishiyama, K. K., McErlain, D. D., Sandino, C., & Boyd, S. K. (2017). Distal skeletal tibia assessed by HR-pQCT is highly correlated with femoral and lumbar vertebra failure loads. Journal of Biomechanics, 59, 43–49. https://doi.org/10.1016/j.jbiomech.2017.05.011
Lee, M. Y., Yang, C. H., & Yang, K. (2014). Modeling guided waves propagating in bones with a multilayered model. In IEEE Int Ultrason Symp (pp. 761–764). https://doi.org/10.1109/ULTSYM.2014.0188
Lefebvre, F., Deblock, Y., Campistron, P., Ahite, D., & Fabre, J. (2002). Development of a new ultrasonic technique for bone and biomaterials in vitro characterization. Journal of Biomedical Materials Research, 63(4), 441–446. https://doi.org/10.1002/jbm.10261
Li, Y., & Thompson, R. B. (1990). Influence of anisotropy on the dispersion characteristics of guided ultrasonic plate modes. The Journal of the Acoustical Society of America, 87(5), 1911–1931. https://doi.org/10.1121/1.399318
Li, Y., Xu, K., Jiang, C., Li, Y., Liu, C., Zhang, J., Hu, B., & Ta, D. (2019a). Cortical bone fracture imaging using velocity model based multistatic synthetic aperture ultrasound. In IEEE Int Ultrason Symp (pp. 2348–2350). https://doi.org/10.1109/ULTSYM.2019.8925690
Li, Y., Xu, K., Li, Y., Hu, B., Zhang, J., Le, L. H., & Ta, D. (2019b). Multichannel crossed convolutional neural network for combined estimation of cortical thickness and bulk velocities using ultrasonic guided waves: A simulation study. In IEEE Int Ultrason Symp (pp. 2412–2415). https://doi.org/10.1109/ULTSYM.2019.8926036
Li, Y., Xu, K., Li, Y., Xu, F., Ta, D., & Wang, W. (2020). Deep learning analysis of ultrasonic guided waves for cortical bone characterization. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68(4), 935–951. https://doi.org/10.1109/TUFFC.2020.3025546
Määttä, M., Moilanen, P., Timonen, J., Pulkkinen, P., Korpelainen, R., & Jämsä, T. (2014). Association between low-frequency ultrasound and hip fractures-comparison with DXA-based BMD. BMC Musculoskeletal Disorders, 15(1), 1–8. https://doi.org/10.1186/1471-2474-15-208
Maimbourg, G., Guilbert, J., Bancel, T., Houdouin, A., Raybaud, G., Tanter, M., & Aubry, J. F. (2020). Computationally efficient transcranial ultrasonic focusing: taking advantage of the high correlation length of the human skull. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(10), 1993–2002. https://doi.org/10.1109/TUFFC.2020.2993718
Maraschini, M., Ernst, F., Foti, S., & Socco, L. V. (2010). A new misfit function for multimodal inversion of surface waves. Geophysics, 75(4), G31–G43. https://doi.org/10.1190/1.3436539
Marzani, A., & De Marchi, L. (2013). Characterization of the elastic moduli in composite plates via dispersive guided waves data and genetic algorithms. Journal of Intelligent Material Systems and Structures, 24(17), 2135–2147. https://doi.org/10.1177/1045389X12462645
Mellibovsky, L., Prieto-Alhambra, D., Mellibovsky, F., Güerri-Fernández, R., Nogués, X., Randall, C., Hansma, P. K., & Díez-Perez, A. (2015). Bone tissue properties measurement by reference point indentation in glucocorticoid-induced osteoporosis. Journal of Bone and Mineral Research, 30(9), 1651–1656. https://doi.org/10.1002/jbmr.2497
Mezil, S., Laurent, J., Royer, D., & Prada, C. (2014). Non contact probing of interfacial stiffnesses between two plates by zero-group velocity lamb modes. Applied Physics Letters, 105(2), 021605. https://doi.org/10.1063/1.4890110
Minonzio, J., Zapata, E., Bochud, N., Vallet, Q., Rongieras, F., Pialat, J., Follet, H., & Mitton, D. (2018a). Ex vivo radius fracture discrimination from cortical thickness and porosity obtained by axial transmission. In IEEE Int Ultrason Symp (pp. 1–4). https://doi.org/10.1109/ULTSYM.2018.8579720
Minonzio, J. G., Bochud, N., Vallet, Q., Bala, Y., Ramiandrisoa, D., Follet, H., Mitton, D., & Laugier, P. (2018b). Bone cortical thickness and porosity assessment using ultrasound guided waves: An ex vivo validation study. Bone, 116, 111–119. https://doi.org/10.1016/j.bone.2018.07.018
Minonzio, J. G., Bochud, N., Vallet, Q., Ramiandrisoa, D., Etcheto, A., Briot, K., Kolta, S., Roux, C., & Laugier, P. (2019). Ultrasound-based estimates of cortical bone thickness and porosity are associated with nontraumatic fractures in postmenopausal women: A pilot study. Journal of Bone and Mineral Research, 34(9), 1585–1596. https://doi.org/10.1002/jbmr.3733
Minonzio, J. G., Cataldo, B., Olivares, R., Ramiandrisoa, D., Soto, R., Crawford, B., De Albuquerque, V. H. C., & Munoz, R. (2020). Automatic classifying of patients with non-traumatic fractures based on ultrasonic guided wave spectrum image using a dynamic support vector machine. IEEE Access, 8, 194752–194764. https://doi.org/10.1109/ACCESS.2020.3033480
Minonzio, J. G., Foiret, J., Moilanen, P., Pirhonen, J., Zhao, Z., Talmant, M., Timonen, J., & Laugier, P. (2015). A free plate model can predict guided modes propagating in tubular bone-mimicking phantoms. The Journal of the Acoustical Society of America, 137(1), EL98–EL104. https://doi.org/10.1121/1.4903920
Minonzio, J. G., Foiret, J., Talmant, M., & Laugier, P. (2011). Impact of attenuation on guided mode wavenumber measurement in axial transmission on bone mimicking plates. The Journal of the Acoustical Society of America, 130(6), 3574–3582. https://doi.org/10.1121/1.3652884
Minonzio, J. G., Talmant, M., & Laugier, P. (2010). Guided wave phase velocity measurement using multi-emitter and multi-receiver arrays in the axial transmission configuration. The Journal of the Acoustical Society of America, 127(5), 2913–2919. https://doi.org/10.1121/1.3377085
Mishima, T., Motoyama, K., Imanishi, Y., Hamamoto, K., Nagata, Y., Yamada, S., Kuriyama, N., Watanabe, Y., Emoto, M., & Inaba, M. (2015). Decreased cortical thickness, as estimated by a newly developed ultrasound device, as a risk for vertebral fracture in type 2 diabetes mellitus patients with eGFR of less than 60 mL/min/1.73 m2. Osteoporosis International, 26(1), 229–236. https://doi.org/10.1007/s00198-014-2843-x
Mohanty, K., Yousefian, O., Karbalaeisadegh, Y., Ulrich, M., Grimal, Q., & Muller, M. (2019). Artificial neural network to estimate micro-architectural properties of cortical bone using ultrasonic attenuation: A 2-D numerical study. Computers in Biology and Medicine, 114, 103457. https://doi.org/10.1016/j.compbiomed.2019.103457
Moilanen, P. (2008). Ultrasonic guided waves in bone. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55(6), 1277–1286. https://doi.org/10.1109/TUFFC.2008.790
Moilanen, P., Kilappa, V., Nicholson, P. H., Timonen, J., & Cheng, S. (2004). Thickness sensitivity of ultrasound velocity in long bone phantoms. Ultrasound in Medicine & Biology, 30(11), 1517–1521. https://doi.org/10.1016/j.ultrasmedbio.2004.08.017
Moilanen, P., Määttä, M., Kilappa, V., Xu, L., Nicholson, P., Alén, M., Timonen, J., Jämsä, T., & Cheng, S. (2013). Discrimination of fractures by low-frequency axial transmission ultrasound in postmenopausal females. Osteoporosis International, 24(2), 723–730. https://doi.org/10.1007/s00198-012-2022-x
Moilanen, P., Nicholson, P., Kärkkäinen, T., Wang, Q., Timonen, J., & Cheng, S. (2003). Assessment of the tibia using ultrasonic guided waves in pubertal girls. Osteoporosis International, 14(12), 1020–1027. https://doi.org/10.1007/s00198-003-1528-7
Moilanen, P., Nicholson, P., Kilappa, V., Cheng, S., & Timonen, J. (2006). Measuring guided waves in long bones: Modeling and experiments in free and immersed plates. Ultrasound in Medicine & Biology, 32(5), 709–719. https://doi.org/10.1016/j.ultrasmedbio.2006.02.1402
Moilanen, P., Nicholson, P. H., Kilappa, V., Cheng, S., & Timonen, J. (2007a). Assessment of the cortical bone thickness using ultrasonic guided waves: Modelling and in vitro study. Ultrasound in Medicine & Biology, 33(2), 254–262. https://doi.org/10.1016/j.ultrasmedbio.2006.07.038
Moilanen, P., Salmi, A., Kilappa, V., Zhao, Z., Timonen, J., & Hæggström, E. (2017). Phased laser diode array permits selective excitation of ultrasonic guided waves in coated bone-mimicking tubes. Journal of Applied Physics, 122(14), 144901. https://doi.org/10.1063/1.5007224
Moilanen, P., Talmant, M., Kilappa, V., Nicholson, P., Cheng, S., Timonen, J., & Laugier, P. (2008). Modeling the impact of soft tissue on axial transmission measurements of ultrasonic guided waves in human radius. The Journal of the Acoustical Society of America, 124(4), 2364–2373. https://doi.org/10.1121/1.2973228
Moilanen, P., Talmant, M., Nicholson, P. H., Cheng, S., Timonen, J., & Laugier, P. (2007b). Ultrasonically determined thickness of long cortical bones: Three-dimensional simulations of in vitro experiments. The Journal of the Acoustical Society of America, 122(4), 2439–2445. https://doi.org/10.1121/1.2769619
Moilanen, P., Zhao, Z., Karppinen, P., Karppinen, T., Kilappa, V., Pirhonen, J., Myllylä, R., Hæggström, E., & Timonen, J. (2014). Photo-acoustic excitation and optical detection of fundamental flexural guided wave in coated bone phantoms. Ultrasound in Medicine & Biology, 40(3), 521–531. https://doi.org/10.1016/j.ultrasmedbio.2013.10.018
Moreau, L., Minonzio, J. G., Foiret, J., Bossy, E., Talmant, M., & Laugier, P. (2014a). Accurate measurement of guided modes in a plate using a bidirectional approach. The Journal of the Acoustical Society of America, 135(1), EL15–EL21. https://doi.org/10.1121/1.4832335
Moreau, L., Minonzio, J. G., Talmant, M., & Laugier, P. (2014b). Measuring the wavenumber of guided modes in waveguides with linearly varying thickness. The Journal of the Acoustical Society of America, 135(5), 2614–2624. https://doi.org/10.1121/1.4869691
Morin, C., & Hellmich, C. (2014). A multiscale poromicromechanical approach to wave propagation and attenuation in bone. Ultrasonics, 54(5), 1251–1269. https://doi.org/10.1016/j.ultras.2013.12.005
Muller, M., Moilanen, P., Bossy, E., Nicholson, P., Kilappa, V., Timonen, J., Talmant, M., Cheng, S., & Laugier, P. (2005). Comparison of three ultrasonic axial transmission methods for bone assessment. Ultrasound in Medicine & Biology, 31(5), 633–642. https://doi.org/10.1016/j.ultrasmedbio.2005.02.001
Naili, S., Vu, M. B., Grimal, Q., Talmant, M., Desceliers, C., Soize, C., & Haïat, G. (2010). Influence of viscoelastic and viscous absorption on ultrasonic wave propagation in cortical bone: Application to axial transmission. The Journal of the Acoustical Society of America, 127(4), 2622–2634. https://doi.org/10.1121/1.3353091
Nguyen, V. H., & Naili, S. (2013). Ultrasonic wave propagation in viscoelastic cortical bone plate coupled with fluids: a spectral finite element study. Computer Methods in Biomechanics and Biomedical Engineering, 16(9), 963–974. https://doi.org/10.1080/10255842.2011.645811
Nguyen, V. H., Tran, T. N., Sacchi, M. D., Naili, S., & Le, L. H. (2017). Computing dispersion curves of elastic/viscoelastic transversely-isotropic bone plates coupled with soft tissue and marrow using semi-analytical finite element (SAFE) method. Computers in Biology and Medicine, 87, 371–381. https://doi.org/10.1016/j.compbiomed.2017.06.001
Nicholson, P. H., Moilanen, P., Kärkkäinen, T., Timonen, J., & Cheng, S. (2002). Guided ultrasonic waves in long bones: modelling, experiment and in vivo application. Physiological Measurement, 23(4), 755. https://doi.org/10.1088/0967-3334/23/4/313
Nicks, K. M., Amin, S., Atkinson, E. J., Riggs, B. L., Melton III, L. J., & Khosla, S. (2012). Relationship of age to bone microstructure independent of areal bone mineral density. Journal of Bone and Mineral Research, 27(3), 637–644. https://doi.org/10.1002/jbmr.1468
Niklasson, A. J., Datta, S. K., & Dunn, M. L. (2000). On approximating guided waves in plates with thin anisotropic coatings by means of effective boundary conditions. The Journal of the Acoustical Society of America, 108(3), 924–933. https://doi.org/10.1121/1.1286882
Nishiyama, K., Macdonald, H., Hanley, D., & Boyd, S. (2013). Women with previous fragility fractures can be classified based on bone microarchitecture and finite element analysis measured with HR-pQCT. Osteoporosis International, 24(5), 1733–1740. https://doi.org/10.1007/s00198-012-2160-1
Nishiyama, K. K., Macdonald, H. M., Buie, H. R., Hanley, D. A., & Boyd, S. K. (2010). Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. Journal of Bone and Mineral Research, 25(4), 882–890. https://doi.org/10.1359/jbmr.091020
Okumura, S., Nguyen, V. H., Taki, H., Haïat, G., Naili, S., & Sato, T. (2018). Rapid high-resolution wavenumber extraction from ultrasonic guided waves using adaptive array signal processing. Applied Science, 8(4), 652. https://doi.org/10.3390/app8040652
Olszynski, W. P., Brown, J. P., Adachi, J. D., Hanley, D. A., Ioannidis, G., Davison, K. S., & CaMos Research Group. (2013). Multisite quantitative ultrasound for the prediction of fractures over 5 years of follow-up: The Canadian Multicentre Osteoporosis Study. Journal of Bone and Mineral Research, 28(9), 2027–2034. https://doi.org/10.1002/jbmr.1931
Ostertag, A., Peyrin, F., Gouttenoire, P., Laredo, J., DeVernejoul, M., Solal, M. C., & Chappard, C. (2016). Multiscale and multimodality computed tomography for cortical bone analysis. Physics in Medicine & Biology, 61(24), 8553. https://doi.org/10.1088/0031-9155/61/24/8553
Papacharalampopoulos, A., Vavva, M. G., Protopappas, V. C., Fotiadis, D. I., & Polyzos, D. (2011). A numerical study on the propagation of Rayleigh and guided waves in cortical bone according to Mindlin’s form II gradient elastic theory. The Journal of the Acoustical Society of America, 130(2), 1060–1070. https://doi.org/10.1121/1.3605566
Parfitt, A. M. (2002). Misconceptions (2): turnover is always higher in cancellous than in cortical bone. Bone, 30(6), 807–809. https://doi.org/10.1016/s8756-3282(02)00735-4
Parnell, W. J., & Grimal, Q. (2009). The influence of mesoscale porosity on cortical bone anisotropy. investigations via asymptotic homogenization. Journal of the Royal Society Interface, 6(30), 97–109. https://doi.org/10.1098/rsif.2008.0255
Parnell, W. J., Vu, M., Grimal, Q., & Naili, S. (2012). Analytical methods to determine the effective mesoscopic and macroscopic elastic properties of cortical bone. Biomechanics and Modeling in Mechanobiology, 11(6), 883–901. https://doi.org/10.1007/s10237-011-0359-2
Pereira, D., Fernandes, J., & Belanger, P. (2019). Ex vivo assessment of cortical bone properties using low-frequency ultrasonic guided waves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(5), 910–922. https://doi.org/10.1109/TUFFC.2019.2958035
Pereira, D., Haiat, G., Fernandes, J., & Belanger, P. (2017). Simulation of acoustic guided wave propagation in cortical bone using a semi-analytical finite element method. The Journal of the Acoustical Society of America, 141(4), 2538–2547. https://doi.org/10.1121/1.4979695
Raum, K., Leguerney, I., Chandelier, F., Bossy, E., Talmant, M., Saïed, A., Peyrin, F., & Laugier, P. (2005). Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements. Ultrasound in Medicine & Biology, 31(9), 1225–1235. https://doi.org/10.1016/j.ultrasmedbio.2005.05.002
Renaud, G., Clouzet, P., Cassereau, D., & Talmant, M. (2020). Measuring anisotropy of elastic wave velocity with ultrasound imaging and an autofocus method: application to cortical bone. Physics in Medicine & Biology, 65(23), 235016. https://doi.org/10.1088/1361-6560/abb92c
Renaud, G., Kruizinga, P., Cassereau, D., & Laugier, P. (2018). In vivo ultrasound imaging of the bone cortex. Physics in Medicine & Biology, 63(12), 125010. https://doi.org/10.1088/1361-6560/aac784
Rhee, S.-H., Lee, J.-K., and Lee, J.-J. (2007). The group velocity variation of Lamb wave in fiber reinforced composite plate. Ultrasonics, 47(1–4), 55–63. https://doi.org/10.1016/j.ultras.2007.07.005
Rogers, W. (1995). Elastic property measurement using Rayleigh-Lamb waves. Research in Nondestructive Evaluation, 6(4), 185–208. https://doi.org/10.1007/BF01606381
Rosi, G., Nguyen, V. H., & Naili, S. (2016). Numerical investigations of ultrasound wave propagating in long bones using a poroelastic model. Mathematics and Mechanics of Solids, 21(1), 119–133. https://doi.org/10.1177/1081286515582889
Royer, D., & Dieulesaint, E. (1999). Elastic waves in solids I: Free and guided propagation. Springer Science & Business Media.
Saeki, M., Bustamante, L., Misaki, T., Chiba, K., Mano, I., Nagatani, Y., & Matsukawa, M. (2020). FDTD simulation study of ultrasonic wave propagation in human radius model generated from 3D HR-pQCT images. Physics in Medicine, 10, 100029. https://doi.org/10.1016/j.phmed.2020.100029
Sarvazyan, A., Tatarinov, A., Egorov, V., Airapetian, S., Kurtenok, V., & Gatt Jr, C. J. (2009). Application of the dual-frequency ultrasonometer for osteoporosis detection. Ultrasonics, 49(3), 331–337. https://doi.org/10.1016/j.ultras.2008.10.003
Schneider, J., Iori, G., Ramiandrisoa, D., Hammami, M., Gräsel, M., Chappard, C., Barkmann, R., Laugier, P., Grimal, Q., Minonzio, J. G., et al. (2019a). Ex vivo cortical porosity and thickness predictions at the tibia using full-spectrum ultrasonic guided-wave analysis. Archives of Osteoporosis, 14(1), 1–11. https://doi.org/10.1007/s11657-019-0578-1
Schneider, J., Ramiandrisoa, D., Armbrecht, G., Ritter, Z., Felsenberg, D., Raum, K., & Minonzio, J. G. (2019b). In vivo measurements of cortical thickness and porosity at the proximal third of the tibia using guided waves: Comparison with site-matched peripheral quantitative computed tomography and distal high-resolution peripheral quantitative computed tomography. Ultrasound in Medicine & Biology, 45(5), 1234–1242. https://doi.org/10.1016/j.ultrasmedbio.2019.01.008
Schousboe, J., Riekkinen, O., & Karjalainen, J. (2017). Prediction of hip osteoporosis by DXA using a novel pulse-echo ultrasound device. Osteoporosis International, 28(1):85–93. https://doi.org/10.1007/s00198-016-3722-4
Shanbhogue, V. V., Brixen, K., & Hansen, S. (2016). Age-and sex-related changes in bone microarchitecture and estimated strength: a three-year prospective study using HRpQCT. Journal of Bone and Mineral Research, 31(8), 1541–1549. https://doi.org/10.1002/jbmr.2817
Siegel, I., Anast, G., & Melds, T. (1958). The determination of fracture healing by measurement of sound velocity across the fracture site. Surgery, Gynecology & Obstetrics, 107(3), 327–332.
Sievänen, H., Cheng, S., Ollikainen, S., & Uusi-Rasi, K. (2001). Ultrasound velocity and cortical bone characteristics in vivo. Osteoporosis International, 12(5), 399–405. https://doi.org/10.1007/s001980170109
Simonetti, F. (2004). Lamb wave propagation in elastic plates coated with viscoelastic materials. The Journal of the Acoustical Society of America, 115(5), 2041–2053. https://doi.org/10.1121/1.1695011
Siris, E. S., Chen, Y.-T., Abbott, T. A., Barrett-Connor, E., Miller, P. D., Wehren, L. E., & Berger, M. L. (2004). Bone mineral density thresholds for pharmacological intervention to prevent fractures. Archives of Internal Medicine, 164(10), 1108–1112. https://doi.org/10.1001/archinte.164.10.1108
Sornay-Rendu, E., Boutroy, S., Duboeuf, F., & Chapurlat, R. D. (2017). Bone microarchitecture assessed by HR-pQCT as predictor of fracture risk in postmenopausal women: the OFELY study. Journal of Bone and Mineral Research, 32(6), 1243–1251. https://doi.org/10.1002/jbmr.3105
Sornay-Rendu, E., Cabrera-Bravo, J.-L., Boutroy, S., Munoz, F., & Delmas, P. D. (2009). Severity of vertebral fractures is associated with alterations of cortical architecture in postmenopausal women. Journal of Bone and Mineral Research, 24(4), 737–743. https://doi.org/10.1359/jbmr.081223
Stein, E. M., Rosete, F., Young, P., Kamanda-Kosseh, M., McMahon, D. J., Luo, G., Kaufman, J. J., Shane, E., & Siffert, R. S. (2013). Clinical assessment of the 1/3 radius using a new desktop ultrasonic bone densitometer. Ultrasound in Medicine & Biology, 39(3), 388–395. https://doi.org/10.1016/j.ultrasmedbio.2012.09.024
Stüssi, E., & Fäh, D. (1988). Assessment of bone mineral content by in vivo measurement of flexural wave velocities. Medical and Biological Engineering and Computi, 26(4), 349–354. https://doi.org/10.1007/BF02442290
Sugino, C., Ruzzene, M., & Erturk, A. (2021). Experimental and computational investigation of guided waves in a human skull. Ultrasound in Medicine & Biology, 47(3), 787–798. https://doi.org/10.1016/j.ultrasmedbio.2020.11.019
Sun, K., Hong, K., Yuan, L., Shen, Z., & Ni, X. (2014). Inversion of functional graded materials elastic properties from ultrasonic lamb wave phase velocity data using genetic algorithm. Journal of Nondestructive Evaluation, 33(1), 34–42. https://doi.org/10.1007/s10921-013-0200-1
Sundh, D., Nilsson, A., Nilsson, M., Johansson, L., Mellström, D., & Lorentzon, M. (2017). Increased cortical porosity in women with hip fracture. Journal of Internal Medicine, 281(5), 496–506. https://doi.org/10.1111/joim.12587
Ta, D., Wang, W., Wang, Y., Le, L. H., & Zhou, Y. (2009). Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone. Ultrasound in Medicine & Biology, 35(4), 641–652. https://doi.org/10.1016/j.ultrasmedbio.2008.10.007
Taes, Y., Lapauw, B., Griet, V., De Bacquer, D., Goemaere, S., Zmierczak, H., & Kaufman, J. M. (2010). Prevalent fractures are related to cortical bone geometry in young healthy men at age of peak bone mass. Journal of Bone and Mineral Research, 25(6), 1433–1440. https://doi.org/10.1002/jbmr.17
Talmant, M., Foiret, J., & Minonzio, J. G. (2011). Guided waves in cortical bone. In Bone quantitative ultrasound (pp. 147–179). Springer. https://doi.org/10.1007/978-94-007-0017-8_7
Talmant, M., Kolta, S., Roux, C., Haguenauer, D., Vedel, I., Cassou, B., Bossy, E., & Laugier, P. (2009). In vivo performance evaluation of bi-directional ultrasonic axial transmission for cortical bone assessment. Ultrasound in Medicine & Biology, 35(6), 912–919. https://doi.org/10.1016/j.ultrasmedbio.2008.12.008
Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics.
Tatarinov, A., Dubonos, S., KhA, I., Oganov, V., Dzenis, V., & Rakhmanov, A. (1990). Ultrasonic diagnosis of the changes in human tibia during 370-day antiorthostatic hypokinesia. Kosmicheskaia biologiia i aviakosmicheskaia meditsina, 24(2), 29–31.
Tatarinov, A., Sarvazyan, A., Beller, G., & Felsenberg, D. (2011). Comparative examination of human proximal tibiae in vitro by ultrasonic guided waves and pQCT. Ultrasound in Medicine & Biology, 37(11), 1791–1801. https://doi.org/10.1016/j.ultrasmedbio.2011.04.013
Tatarinov, A., Sarvazyan, N., & Sarvazyan, A. (2005). Use of multiple acoustic wave modes for assessment of long bones: Model study. Ultrasonics, 43(8), 672–680. https://doi.org/10.1016/j.ultras.2005.03.004
Thakare, D. R., Abid, A., Pereira, D., Fernandes, J., Belanger, P., & Rajagopal, P. (2017). Semi-analytical finite-element modeling approach for guided wave assessment of mechanical degradation in bones. International Biomechanics, 4(1), 17–27. https://doi.org/10.1080/23335432.2017.1319295
Tjong, W., Nirody, J., Burghardt, A. J., Carballido-Gamio, J., & Kazakia, G. J. (2014). Structural analysis of cortical porosity applied to HR-pQCT data. Medical Physics, 41(1), 013701. https://doi.org/10.1118/1.4851575
Tran, T. N., Le, L. H., Sacchi, M. D., & Nguyen, V.-H. (2018). Sensitivity analysis of ultrasonic guided waves propagating in trilayered bone models: a numerical study. Biomechanics and Modeling in Mechanobiology, 17(5), 1269–1279. https://doi.org/10.1007/s10237-018-1025-8
Tran, T. N., Nguyen, K.-C. T., Sacchi, M. D., & Le, L. H. (2014). Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform. Ultrasound in Medicine & Biology, 40(11), 2715–2727. https://doi.org/10.1016/j.ultrasmedbio.2014.05.021
Tran, T. N., Sacchi, M. D., Ta, D., Nguyen, V.-H., Lou, E., & Le, L. H. (2019). Nonlinear inversion of ultrasonic dispersion curves for cortical bone thickness and elastic velocities. Annals of Biomedical Engineering, 47(11), 2178–2187. https://doi.org/10.1007/s10439-019-02310-4
Tran, T. N., Stieglitz, L., Gu, Y. J., & Le, L. H. (2013). Analysis of ultrasonic waves propagating in a bone plate over a water half-space with and without overlying soft tissue. Ultrasound in Medicine & Biology, 39(12), 2422–2430. https://doi.org/10.1016/j.ultrasmedbio.2013.06.007
Unal, M., Creecy, A., & Nyman, J. S. (2018). The role of matrix composition in the mechanical behavior of bone. Current Osteoporosis Reports, 16(3), 205–215. https://doi.org/10.1007/s11914-018-0433-0
Vallet, Q., Bochud, N., Chappard, C., Laugier, P., & Minonzio, J. G. (2016). In vivo characterization of cortical bone using guided waves measured by axial transmission. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 63(9), 1361–1371. https://doi.org/10.1109/TUFFC.2016.2587079
Vavva, M. G., Protopappas, V. C., Gergidis, L. N., Charalambopoulos, A., Fotiadis, D. I., & Polyzos, D. (2009). Velocity dispersion of guided waves propagating in a free gradient elastic plate: Application to cortical bone. The Journal of the Acoustical Society of America, 125(5), 3414–3427. https://doi.org/10.1121/1.3110203
Veres, I. A. & Sayir, M. B. (2004). Wave propagation in a wooden bar. Ultrasonics, 42(1–9), 495–499. https://doi.org/10.1016/j.ultras.2004.01.027
Vilayphiou, N., Boutroy, S., Sornay-Rendu, E., Van Rietbergen, B., & Chapurlat, R. (2016). Age-related changes in bone strength from HR-pQCT derived microarchitectural parameters with an emphasis on the role of cortical porosity. Bone, 83, 233–240. https://doi.org/10.1016/j.bone.2015.10.012
Vogl, F., Bernet, B., Bolognesi, D., & Taylor, W. R. (2017). Towards assessing cortical bone porosity using low-frequency quantitative acoustics: A phantom-based study. PLoS One, 12(9), e0182617. https://doi.org/10.1371/journal.pone.0182617
Vogl, F., Friesenbichler, B., Hüsken, L., Kramers-de Quervain, I. A., & Taylor, W. R. (2019). Can low-frequency guided waves at the tibia paired with machine learning differentiate between healthy and osteopenic/osteoporotic subjects? A pilot study. Ultrasonics, 94, 109–116. https://doi.org/10.1016/j.ultras.2018.11.012
Vogl, F., Schnüriger, K., Gerber, H., & Taylor, W. R. (2016). Reliability of phase velocity measurements of flexural acoustic waves in the human tibia in-vivo. PLoS One, 11(3), e0152417. https://doi.org/10.1371/journal.pone.0152417
Vu, M.-B., & Nguyen-Sy, T. (2019). On the effective anisotropic elastic properties of porous hydroxyapatite, porous collagen, and cortical bone: A homogenization scheme with percolation threshold concept. Mathematics and Mechanics of Solids, 24(4), 1091–1102. https://doi.org/10.1177/1081286518769961
Wang, J., Stein, E. M., Zhou, B., Nishiyama, K. K., Yu, Y. E., Shane, E., & Guo, X. E. (2016). Deterioration of trabecular plate-rod and cortical microarchitecture and reduced bone stiffness at distal radius and tibia in postmenopausal women with vertebral fractures. Bone, 88, 39–46. https://doi.org/10.1016/j.bone.2016.04.003
Wear, K., Hoffmeister, B., & Laugier, P. (2018). Quantitative ultrasound and the management of osteoporosis. Acoustics Today, 14(2), 34–42.
Weiss, M., Ben-Shlomo, A., Hagag, P., & Rapoport, M. (2000). Reference database for bone speed of sound measurement by a novel quantitative multi-site ultrasound device. Osteoporosis International, 11(8), 688–696. https://doi.org/10.1007/s001980070067
Xu, K., Laugier, P., & Minonzio, J. G. (2018). Dispersive radon transform. The Journal of the Acoustical Society of America, 143(5), 2729–2743. https://doi.org/10.1121/1.5036726
Xu, K., Minonzio, J. G., Ta, D., Hu, B., Wang, W., & Laugier, P. (2016a). Sparse SVD method for high-resolution extraction of the dispersion curves of ultrasonic guided waves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 63(10), 1514–1524. https://doi.org/10.1109/TUFFC.2016.2592688
Xu, K., Ta, D., Cassereau, D., Hu, B., Wang, W., Laugier, P., & Minonzio, J. G. (2016b). Multichannel processing for dispersion curves extraction of ultrasonic axial-transmission signals: Comparisons and case studies. The Journal of the Acoustical Society of America, 140(3), 1758–1770. https://doi.org/10.1121/1.4962491
Yan, L., Cunfu, H., Guorong, S., Bin, W., Chung, C. H., & Lee, Y. C. (2014). Elastic properties inversion of an isotropic plate by hybrid particle swarm-based-simulated annealing optimization technique from leaky lamb wave measurements using acoustic microscopy. Journal of Nondestructive Evaluation, 33(4), 651–662. https://doi.org/10.1007/s10921-014-0259-3
Yapura, C., & Kinra, V. (1997). Guided waves in a fluid-orthotropic solid bilayer. In D. O. Thompson & D. E. Chimenti (Eds.), Rev Prog Quant Nondestr Eval (pp. 1633–1640). Springer. https://doi.org/10.1007/978-1-4615-5947-4_213
Yapura, C. L., & Kinra, V. K. (1995). Guided waves in a fluid-solid bilayer. Wave Motion, 21(1), 35–46. https://doi.org/10.1016/0165-2125(94)00043-5
Yeh, C.-H., & Yang, C.-H. (2011). Characterization of mechanical and geometrical properties of a tube with axial and circumferential guided waves. Ultrasonics, 51(4), 472–479. https://doi.org/10.1016/j.ultras.2010.11.013
Yousefian, O., Karbalaeisadegh, Y., & Muller, M. (2019). Modeling ultrasound attenuation in porous structures with mono-disperse random pore distributions using the independent scattering approximation: a 2D simulation study. Physics in Medicine & Biology, 64(15), 155013. https://doi.org/10.1088/1361-6560/ab2a32
Yousefian, O., White, R., Karbalaeisadegh, Y., Banks, H., & Muller, M. (2018). The effect of pore size and density on ultrasonic attenuation in porous structures with mono-disperse random pore distribution: A two-dimensional in-silico study. The Journal of the Acoustical Society of America, 144(2), 709–719. https://doi.org/10.1121/1.5049782
Zebaze, R., Ghasem-Zadeh, A., Bohte, A., Iuliano-Burns, S., Mirams, M., Price, R. I., Mackie, E. J., & Seeman, E. (2010). Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet, 375(9727), 1729–1736. https://doi.org/10.1016/S0140-6736(10)60320-0
Zebaze, R., Ghasem-Zadeh, A., Mbala, A., & Seeman, E. (2013). A new method of segmentation of compact-appearing, transitional and trabecular compartments and quantification of cortical porosity from high resolution peripheral quantitative computed tomographic images. Bone, 54(1), 8–20. https://doi.org/10.1016/j.bone.2013.01.007
Zebaze, R., Libanati, C., McClung, M. R., Zanchetta, J. R., Kendler, D. L., Høiseth, A., Wang, A., Ghasem-Zadeh, A., & Seeman, E. (2016). Denosumab reduces cortical porosity of the proximal femoral shaft in postmenopausal women with osteoporosis. Journal of Bone and Mineral Research, 31(10), 1827–1834. https://doi.org/10.1002/jbmr.2855
Zhao, W., Li, M., Harley, J. B., Jin, Y., Moura, J. M., & Zhu, J. (2017). Reconstruction of lamb wave dispersion curves by sparse representation with continuity constraints. The Journal of the Acoustical Society of America, 141(2), 749–763. https://doi.org/10.1121/1.4974063
Zhu, T. Y., Hung, V. W., Cheung, W. H., Cheng, J. C., Qin, L., & Leung, K. S. (2016). Value of measuring bone microarchitecture in fracture discrimination in older women with recent hip fracture: a case-control study with HR-pQCT. Scientific Reports, 6(1), 1–7. https://doi.org/10.1038/srep34185
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Bochud, N., Laugier, P. (2022). Axial Transmission: Techniques, Devices and Clinical Results. In: Laugier, P., Grimal, Q. (eds) Bone Quantitative Ultrasound. Advances in Experimental Medicine and Biology, vol 1364. Springer, Cham. https://doi.org/10.1007/978-3-030-91979-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-91979-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91978-8
Online ISBN: 978-3-030-91979-5
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)