Skip to main content

Distal Renal Tubular Acidosis (Type I DRTA)

  • Chapter
  • First Online:
Renal Tubular Acidosis in Children

Abstract

Distal RTA is the most common type of RTA in children but is infrequently seen. Urine acidification ability is decreased at the α-intercalated cells (distal tubule). Chromosomal mutations are heterogeneous: recessive type a-subunit: ATP6V0A4/7q33-34; type b1 subunit: ATP6V1B1, 2p13: apical α-intercalated cells. They extract H+ from the cytosol to the tubular lumen (H+ATPase). Clinical manifestations: mixed distal, proximal type III RTA (normal anion gap), anorexia, vomiting, hypokalemia, hypercalciuria, hypocitraturia, rickets, nephrocalcinosis, renal lithiasis, sensorineural deafness; early or late-onset.

Chromosomal mutations: HCO3/Cl exchanger (kAE1), 17q 1-22 (SCL4A1 gene): basolateral membrane, and, at the erythrocytes: RTA, hemolytic anemia, hereditary spherocytosis.

Mixed RTA, the mutation is at intracellular CA II. Previously classified as type III, nowadays considered a childhood variant of distal RTA. Carbonic anhydrase II (CA II) chromosomal alterations (gene CA2 8q22), autosomal recessive: severe, early, or neonatal, with osteopetrosis, brain calcifications, cognitive changes, mental retardation, bone fractures, deafness, craniofacial dysmorphias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lightwood R. Calcium infarction of the kidneys in infants. Arch Dis Child. 1935;10:205–6.

    Google Scholar 

  2. Rodriguez Soriano J. Renal tubular acidosis: the clinical entity. J Am Soc Nephrol. 2002;13(8):2160–70.

    PubMed  Google Scholar 

  3. Morris RC Jr, Fudenberg HH. Impaired renal acidification in patients with hypergammaglobulinemia. Medicine. 1967;46:57–69N.

    CAS  PubMed  Google Scholar 

  4. Talal N. Sjogren’s syndrome, lymphoproliferation and, renal tubular acidosis. Ann Intern Med. 1971;74:633–4.

    CAS  PubMed  Google Scholar 

  5. DuBose TD, Good DW, Hamm LL, Wall SM. Ammonium transport in the kidney: new physiological concepts and their clinical implications. J Am Soc Nephrol. 1991;1:1193–203.

    PubMed  Google Scholar 

  6. Alper SL, Natale J, Gluck S, et al. Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+-ATPase. Proc Natl Acad Sci U S A. 1989;86:5429–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wall SM, Fischer MP. Contribution of the Na(+)-K(+)-2Cl(−) cotransporter (NKCC1) to transepithelial transport of H(+), NH(4)(+), K(+), and Na(+) in rat outer medullary collecting duct. Am Soc Nephrol. 2002;13(4):827–35.

    CAS  Google Scholar 

  8. Darman RB, Chernova MN, et al. The AE gene family of Cl/HCO3 exchangers. J Nephrol. 2002;15(Suppl 5):S41–53.

    PubMed  Google Scholar 

  9. Halperin ML, Kamel KS, Goldstein MB: Principles of acid-base physiology. En Halperin ML, Kamel KS, Goldstein MB (eds): Fluid, electrolyte, and acid-base physiology 4th ed. Saunders Elsevier, Philadelphia, 2010: 3-28.

    Google Scholar 

  10. Dobyan DC, Bulger RE. Renal carbonic anhydrase. Am J Phys. 1982;243(4):F311–24S.

    CAS  Google Scholar 

  11. Endeward V, Cartron JP, Ripoche P, Gros G. RhAG protein of the Rhesus complex is a CO2 channel in the human red cell membrane. FASEB J. 2008;22:64–73.

    CAS  PubMed  Google Scholar 

  12. Carrisoza-Gaytan R, Rangel C, Salvador C, Saldaña-Meyer R, Escalona C, Satlin LM, Liu W, Zavilowitz B, Joyce Trujillo J, Bobadilla NA, Escobar LI. The hyperpolarization-activated cyclic nucleotide-gated HCN2 channel transports ammonium in the distal nephron. Kidney Int. 2011;80:832–40. https://doi.org/10.1038/ki.2011.230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weiner ID, Hamm LL. Molecular mechanisms of renal ammonia transport. Annu Rev Physiol. 2007;69:317–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Escobar L, Mejía N, Gil H, Gil H, Santos F, Santos F. La acidosis tubular renal distal: una enfermedad hereditaria en la que no se pueden eliminar los hidrogeniones. Nefrologia. 2013;33(3):289–96.

    PubMed  Google Scholar 

  15. Battle D, Haque SK. Genetic causes and mechanisms of distal renal tubular acidosis. Nephrol Dial Transplant. 2012;10:3691–704.

    Google Scholar 

  16. Chial H. Mendelian genetics: patterns of inheritance and single-gene disorders. Nat Educat. 2008;1(1):63.

    Google Scholar 

  17. Alper SL. Molecular physiology and genetics of Na+-independent SLC4 anion. Exp Biol. 2009;212:1672–83.

    CAS  Google Scholar 

  18. Wagner S, Vogel R, Lietzke R, et al. Immunochemical characterization of a band 3-like anion exchanger in collecting duct of the human kidney. Am J Phys. 1987;253:F213–21.

    CAS  Google Scholar 

  19. Jarolim P, Shayakul C, Prabakaran D, et al. Autosomal dominant distal renal tubular acidosis is associated in three families with heterozygosity for the R589H mutation in the AE1 (band 3) Cl/HCO3− exchanger. J Biol Chem. 1998;273:638–6388.

    Google Scholar 

  20. Karet FE, Gainza FJ, Györy AZ, Unwin RJ, Wrong O, Tanner MJ, et al. Mutations in the chloride-bicarbonate exchanger gene AE1 cause autosomal dominant but not autosomal recessive distal renal tubular acidosis. Proc Natl Acad Sci. 1998;95:6337–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bruce LJ, Cope DL, Jones GK, Schofield AE, Burley M, Povey S, et al. Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J Clin Invest. 1997;100:693–707, 56.

    Google Scholar 

  22. Battle D, Ghanekar H, Jain S, et al. Hereditary distal renal tubular acidosis: new understandings. Ann Rev Med. 2001;52:471–84.

    Google Scholar 

  23. Alper SL. Familial renal tubular acidosis. J Nephrol. 2010;23(Suppl 16):S57–76.

    PubMed  Google Scholar 

  24. Garg LC. Respective roles of H-ATPase and H-K-ATPase in ion transport in the kidney. J Am Soc Nephrol. 1991;2(5):949–60.

    CAS  PubMed  Google Scholar 

  25. Blake-Palmer KG, Karet FE. Cellular physiology of the renal H_ATPase. Curr Opin Nephrol Hypertens. 2009;18:433–8.

    CAS  PubMed  Google Scholar 

  26. Schuster VL. Function and regulation of collecting duct intercalated cells. Annu Rev Physiol. 1993;55:267–88.

    CAS  PubMed  Google Scholar 

  27. Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H, Sanjad SA, et al. Mutations in the gene encoding B1 subunit of H -ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 1999;21:84–90; Karet FE. Inherited distal renal tubular acidosis. J Am Soc Nephrol. 2002;13:2178–84.

    Google Scholar 

  28. Vargas-Poussou R, Houillier P, Le Pottier N, Strompf L, Loirat C, Baudouin V, et al. Genetic investigation of autosomal recessive distal renal tubular acidosis: evidence for early sensorineural hearing loss associated with mutations in the ATP6V0A4 gene. J Am Soc Nephrol. 2006;17:1437–43.

    CAS  PubMed  Google Scholar 

  29. Stover EH, Borthwick KJ, Bavalia C, Eady N, Fritz DM, Rungroj N, et al. Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med Genet. 2002;39:796–803, 63.

    Google Scholar 

  30. Santos F, Rey C, Málaga S, Rodríguez LM, Orejas G. The syndrome of renal tubular acidosis and nerve deafness. Discordant manifestations in dizygotic twin brothers. Pediatr Nephrol. 1991;5:2357.

    Google Scholar 

  31. Miura K, Sekine T, Takahashi K, Takita J, Harita Y, Ohki K, et al. Mutational analyses of the ATP6V1B1 and ATP6V0A4 genes in patients with primary distal renal tubular acidosis. Nephrol Dial Transplant. 2013;28:2123–30.

    CAS  PubMed  Google Scholar 

  32. Nishi T, Forgac M. The vacuolar (H+)-ATPases-nature’s most versatile proton pumps. Nat Rev Mol Cell Biol. 2002;3:94–103.

    CAS  PubMed  Google Scholar 

  33. Rink N, Bitzan M, O’Gorman G, et al. Endolymphatic sac enlargement in a girl with a novel mutation for distal renal tubular acidosis and severe deafness. Case Rep Pediatr. 2012;2012:605–53.

    Google Scholar 

  34. Goodman AD, Lemann J, Lennon EJ. Production, excretion and, a net balance of fixed acid in patients with renal acidosis. J Clin Invest. 1965;44:495–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Baird TT, Waheed A, Okuyama T, et al. Catalysis and inhibition of human carbonic anhydrase IV. Biochemistry. 1997;36:2669–78.

    CAS  PubMed  Google Scholar 

  36. Battle D, Ghanekar H, Jain S, et al. Hereditary distal renal tubular acidosis: a new understanding. Annu Rev Med. 2001;52:471–4.

    Google Scholar 

  37. Schwartz GJ. Physiology and molecular biology of renal carbonic anhydrase. J Nephrol. 2002;15(Suppl 5):S61–74.

    CAS  PubMed  Google Scholar 

  38. Purkerson JM, Schwartz GJ. The role of carbonic anhydrases in renal physiology. Kidney Int. 2007;71:103–15.

    CAS  PubMed  Google Scholar 

  39. Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat. 2004;24(3):272; Sly WS, Sato S, Zhu XL. Evaluation of carbonic anhydrase isozymes in disorders involving osteopetrosis and/or renal tubular acidosis. Clin Biochem. 1991;4:311–8.

    Google Scholar 

  40. Marks SC Jr. Morphological evidence of reduced bone resorption in osteopetrotic (op) mice. Am J Anat. 1982;163:157–67.

    PubMed  Google Scholar 

  41. Strisciuglio P, Sartorio R, Pecoraro C, Lotito F, Sly WS. Variable clinical presentation of carbonic anhydrase deficiency: evidence for heterogeneity? Eur J Pediatr. 1990;149:337–40.

    CAS  PubMed  Google Scholar 

  42. Hu PY, Roth DE, Skaggs LA, Venta PJ, Tashian RE, Guibaud P, et al. A splice junction mutation in intron 2 of the carbonic anhydrase ii gene of osteopetrosis patients from Arabic countries. Hum Mutat. 1992;1:288–92.

    CAS  PubMed  Google Scholar 

  43. Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE. Carbonic anhydrase II deficiency is identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci U S A. 1983;80(9):2752–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Choi JS, Kim CS, Park JW, Bae EH, Ma SK, Kim SW. Incomplete distal renal tubular acidosis with nephrocalcinosis. Chonnam Med J. 2011;47(3):170–2. https://doi.org/10.4068/cmj.2011.47.3.170. Epub 2011 Dec 26. PMID: 22247918.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Soleimani M. Na+HCO3 cotransporter (NBC): expression and regulation in the kidney. J Nephrol. 2002;15(Suppl 5):S32–40.

    CAS  PubMed  Google Scholar 

  46. Herrin JT. Renal tubular acidosis. In: Avner ED, Harmon WE, Niaudet P, editors. Pediatric nephrology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2004. p. 757–76.

    Google Scholar 

  47. Bushinsky DA, Frick KK. The effects of acid on bone. Curr Opin Nephrol Hypertens. 2000;9:369–79.

    CAS  PubMed  Google Scholar 

  48. Blair HC, Teitelbaum SL, Ghiselli R, et al. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science. 1989;245:855–7.

    CAS  PubMed  Google Scholar 

  49. Halperin ML, Kamel KS, Goldstein MB. Potassium physiology. In: Halperin ML, Kamel KS, Goldstein MB, editors. Fluid, electrolyte, and acid-base physiology. 4th ed. Philadelphia: Saunders Elsevier; 2010. p. 425–59.

    Google Scholar 

  50. Fry AC, Karet FE. Inherited renal acidoses. Physiology (Bethesda). 2007;22:202–11.

    CAS  PubMed  Google Scholar 

  51. Bushinsky DA. Stimulated osteoclastic and suppressed osteoblastic activity in metabolic but not respiratory acidosis. Am J Phys. 1995;268:C80–8.

    CAS  Google Scholar 

  52. Frick KK, Bushinsky DA. Metabolic acidosis stimulates RANKL RNA expression in bone through a cyclo-oxygenase-dependent mechanism. J Bone Miner Res. 2003;18:1317–25.

    CAS  PubMed  Google Scholar 

  53. Chan JCM, Oldham SB. DeLuca HF, an effectiveness of 1-alpha-hydroxyvitamin D3 in children with renal osteodystrophy associated with hemolysis. J Pediatr. 1977;90:820–4.

    CAS  PubMed  Google Scholar 

  54. Campion KL, McCormick WD, Warwicker J, Bin Khayat ME, Atkinson-Dell RC, Delbridge LW, Mun H-C, Conigrave AD, Ward DT. Pathophysiologic changes in extracellular pH modulate parathyroid calcium-sensing receptor activity and secretion via a histidine-independent mechanism. J Am Soc Nephrol. 2015;9:2163–71. https://doi.org/10.1681/ASN.2014070653.

    Article  CAS  Google Scholar 

  55. Velázquez JL. Acidosis tubular renal. Bol Med Hosp Infant Mex. 2012;69:502–8.

    Google Scholar 

  56. Alexander RT, Cordat E, Chambrey R, Dimke H, Eladari D. Acidosis and urinary calcium excretion: insights from genetic disorders. Am Soc Nephrol. 2016;27(12):3511–20.

    CAS  Google Scholar 

  57. Guerra-Hernández NE, Ordaz-López KV, Escobar-Pérez L, Gómez-Tenorio C, García-Nieto VM. Distal renal tubular acidosis screening by urinary acidification testing in Mexican children. Rev Investig Clin. 2015;67(3):191–8.

    Google Scholar 

  58. Milliner DS. Urolithiasis. In: Avner ED, Harmon WE, Niaudet P, editors. Pediatric nephrology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2004. p. 1191–11.

    Google Scholar 

  59. Sikora P, Roth B, Kribs A, Michalk DV, Hesse A. Hoppe B Hypocitraturia is one of the major risk factors for nephrocalcinosis in very low birth weight (VLBW) infants. Kidney Int. 2003 Jun;63(6):2194–9.

    CAS  PubMed  Google Scholar 

  60. Muñoz AR, Escobar L, Medeiros DM. Sobre-diagnóstico de acidosis tubular renal en México. Rev Investig Clin. 2012;4(64):399–401.

    Google Scholar 

  61. García Nieto V, Rodrigo Jiménez MD. Pruebas de función tubular. Tubulopatías. Nefrología. 2012;7. https://doi.org/10.3265/Nefrologia.2010.pub1.ed80.chapter2794.

  62. Muñoz AR, Escobar L, Medeiros DM. Acidosis tubular renal en niños: conceptos actuales de diagnóstico y tratamiento. Bol Med Hosp Infant Mex. 2013;70:1665–146.

    Google Scholar 

  63. Morris RC Jr, Sebastian A. Alkali therapy in renal tubular acidosis: who needs it? J Am Soc Nephrol. 2002;13:2186–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muñoz, R. (2022). Distal Renal Tubular Acidosis (Type I DRTA). In: Muñoz, R. (eds) Renal Tubular Acidosis in Children. Springer, Cham. https://doi.org/10.1007/978-3-030-91940-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91940-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91939-9

  • Online ISBN: 978-3-030-91940-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics