Skip to main content

Physiology of Renal Potassium Handling

  • Chapter
  • First Online:
Renal Tubular Acidosis in Children

Abstract

The kidney is the organ responsible for maintaining external potassium balance. Throughout the nephron’s tubular epithelium, reabsorption and secretion processes determine the total amount of potassium that is excreted in the urine. In this chapter, we describe these processes and discuss different factors that participate in their regulation, such as luminal flux, aldosterone, or plasma potassium concentration. In addition, examples of pathophysiologic disruptions of these mechanisms are included that cause alterations in plasma potassium concentration. Finally, we review proposed molecular mechanisms to explain the reciprocal relationship between renal potassium handling and acid-base balance, such as the modulation of potassium secretion by the aldosterone-sensitive distal nephron in the setting of acid-base disturbances, or changes in ammonia synthesis in the proximal tubule in conditions of hypo- or hyperkalemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 01 January 2022

    A correction has been published.

References

  1. Boulpaep EL, Boron WF. Medical physiology. 3rd ed. Philadelphia: Elsevier; 2016.

    Google Scholar 

  2. Zacchia M, Abategiovanni ML, Stratigis S, Capasso G. Potassium: from physiology to clinical implications. Kidney Dis. 2016;2(2):72–9. https://doi.org/10.1159/000446268.

    Article  Google Scholar 

  3. Palmer BF, Clegg DJ. Physiology and pathophysiology of potassium homeostasis. Adv Physiol Educ. 2016;40(4):480–90. https://doi.org/10.1152/advan.00121.2016.

    Article  PubMed  Google Scholar 

  4. Melo Z, Cruz-Rangel S, Bautista R, et al. Molecular evidence for a role for K+-Cl- cotransporters in the kidney. Am J Physiol Ren Physiol. 2013;305(10):1402–11. https://doi.org/10.1152/ajprenal.00390.2013.

    Article  CAS  Google Scholar 

  5. Hebert SC, Desir G, Giebisch G, Wang W. Molecular diversity and regulation of renal potassium channels. Phisol Rev. 2005;3811:319–71. https://doi.org/10.1152/physrev.00051.2003.

    Article  CAS  Google Scholar 

  6. Gamba G. Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev. 2005;85(2):423–93. https://doi.org/10.1152/physrev.00011.2004.

    Article  CAS  PubMed  Google Scholar 

  7. Welling PA, Ho K. A comprehensive guide to the ROMK potassium channel: form and function in health and disease. AJP Ren Physiol. 2009;297(4):F849–63. https://doi.org/10.1152/ajprenal.00181.2009.

    Article  CAS  Google Scholar 

  8. Palmer LG, Schnermann J. Integrated control of na transport along the nephron. Clin J Am Soc Nephrol. 2015;10(4):676–87. https://doi.org/10.2215/CJN.12391213.

    Article  CAS  PubMed  Google Scholar 

  9. Wang B, Wen D, Li H, Wang-france J, Sansom SC. Net K+ secretion in the thick ascending limb of mice on a low-Na, high-K diet. Kidney Int. 2017;92(4):864–75. https://doi.org/10.1016/j.kint.2017.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schnermann J, Steipe B, Briggs JP. In situ studies of distal convoluted tubule in rat. II. K secretion. Am J Physiol Physiol. 1987;252(6):F970–6. https://doi.org/10.1152/ajprenal.1987.252.6.F970.

    Article  CAS  Google Scholar 

  11. Gumz ML, Lynch IJ, Greenlee MM, Cain BD, Wingo CS. The renal H+-K+-ATPases: physiology, regulation, and structure. Am J Physiol Ren Physiol. 2010;298(1):12–21. https://doi.org/10.1152/ajprenal.90723.2008.

    Article  CAS  Google Scholar 

  12. Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM. Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Ren Physiol. 2003;285(5 54-5):998–1012. https://doi.org/10.1152/ajprenal.00067.2003.

    Article  Google Scholar 

  13. Finer G, Shalev H, Birk OS, et al. Transient neonatal hyperkalemia in the antenatal (ROMK defective) Bartter syndrome. J Pediatr. 2003;142(3):318–23. https://doi.org/10.1067/mpd.2003.100.

    Article  CAS  PubMed  Google Scholar 

  14. Grimm PR, Coleman R, Delpire E, Welling PA. Constitutively active SPAK causes hyperkalemia by activating NCC and remodeling distal tubules. J Am Soc Nephrol. 2017;28(9):2597–606. https://doi.org/10.1681/ASN.2016090948.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Valinsky WC, Touyz RM, Shrier A. Aldosterone, SGK1, and ion channels in the kidney. Clin Sci. 2018;132(2):173–83. https://doi.org/10.1042/CS20171525.

    Article  CAS  Google Scholar 

  16. Palmer BF, Alpern RJ. Liddle’s Syndrome. Am J Med. 1998;104(3):301–9. https://doi.org/10.1016/S0002-9343(98)00018-7.

    Article  CAS  PubMed  Google Scholar 

  17. Furgeson SB, Linas S. Mechanisms of type I and type II pseudohypoaldosteronism. J Am Soc Nephrol. 2010;21(11):1842–5. https://doi.org/10.1681/ASN.2010050457.

    Article  CAS  PubMed  Google Scholar 

  18. Ferrari P. The role of 11β-hydroxysteroid dehydrogenase type 2 in human hypertension. Biochim Biophys Acta Mol basis Dis. 2010;1802(12):1178–87. https://doi.org/10.1016/j.bbadis.2009.10.017.

    Article  CAS  Google Scholar 

  19. Todkar A, Picard N, Loffing-Cueni D, et al. Mechanisms of renal control of potassium homeostasis in complete aldosterone deficiency. J Am Soc Nephrol. 2015;26(2):425–38. https://doi.org/10.1681/ASN.2013111156.

    Article  CAS  PubMed  Google Scholar 

  20. Young DB, Paulsen AW. Interrelated effects of aldosterone and plasma potassium on potassium excretion. Am J Physiol Ren Fluid Electrolyte Physiol. 1983;13(1) https://doi.org/10.1152/ajprenal.1983.244.1.f28.

  21. Vallon V, Schroth J, Lang F, Kuhl D, Uchida S. Expression and phosphorylation of the Na+-Cl- cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1. Am J Physiol Ren Physiol. 2009;297(3):F704–12. https://doi.org/10.1152/ajprenal.00030.2009.

    Article  CAS  Google Scholar 

  22. Murillo-de-Ozores AR, Chávez-Canales M, de los Heros P, Gamba G, Castañeda-Bueno M. Physiological processes modulated by the chloride-sensitive WNK-SPAK/OSR1 kinase signaling pathway and the cation-coupled chloride cotransporters. Front Physiol. 2020;11(October):1–28. https://doi.org/10.3389/fphys.2020.585907.

    Article  Google Scholar 

  23. Terker AS, Zhang C, McCormick JA, et al. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab. 2015;21(1):39–50. https://doi.org/10.1016/j.cmet.2014.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bazua-Valenti S, Chavez-Canales M, Rojas-Vega L, et al. The effect of WNK4 on the Na+-Cl- cotransporter is modulated by intracellular chloride. J Am Soc Nephrol. 2015;26(8):1781–6. https://doi.org/10.1681/ASN.2014050470.

    Article  CAS  PubMed  Google Scholar 

  25. Penton D, Czogalla J, Wengi A, et al. Extracellular K + rapidly controls NaCl cotransporter phosphorylation in the native distal convoluted tubule by Cl − −dependent and independent mechanisms. J Physiol. 2016;594(21):6319–31. https://doi.org/10.1113/JP272504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aronson PS, Giebisch G. Effects of pH on potassium: new explanations for old observations. J Am Soc Nephrol. 2011;22(11):1981–9. https://doi.org/10.1681/ASN.2011040414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harris AN, Grimm PR, Lee H-W, et al. Mechanism of hyperkalemia-induced metabolic acidosis. J Am Soc Nephrol. 2018:ASN.2017111163. https://doi.org/10.1681/ASN.2017111163.

  28. Han KH, Lee HW, Handlogten ME, et al. Effect of hypokalemia on renal expression of the ammonia transporter family members, Rh B glycoprotein and Rh C glycoprotein, in the rat kidney. Am J Physiol Ren Physiol. 2011;301(4):823–32. https://doi.org/10.1152/ajprenal.00266.2011.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Castañeda-Bueno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murillo-de-Ozores, A.R., Gamba, G., Castañeda-Bueno, M. (2022). Physiology of Renal Potassium Handling. In: Muñoz, R. (eds) Renal Tubular Acidosis in Children. Springer, Cham. https://doi.org/10.1007/978-3-030-91940-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91940-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91939-9

  • Online ISBN: 978-3-030-91940-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics