Skip to main content

Hyperkalemic Renal Tubular Acidosis (RTA Type IV)

  • Chapter
  • First Online:
Renal Tubular Acidosis in Children

Abstract

Contrary to adults, Type IV RTA is the least frequent type of RTA in children, and the only one showing hyperkalemia. Etiology: primary hypoaldosteronism or pseudohypoaldosteronism. Primary hypoaldosteronism (adrenal insufficiency, Addison’s disease) presents in young children. In older children, the etiology is autoimmune dysplasia, adrenal hemorrhage or infections, amyloidosis, and systemic lupus. Deficiency of 21-α-hydroxylase causes neonatal adrenogenital syndrome. Pseudo-hypoaldosteronism is a lack of response of the kidney to aldosterone actions, secondary to diverse entities with tubulointerstitial nephritis or toxic drugs. Hereditary pseudohypoaldosteronism presents as two types: Type I (PHAI) and Type II (PHAII), with hyperkalemic RTA and different clinical features. Determination of the renal transtubular potassium gradient (GGTK) is used to differentiate hypoaldosteronism from pseudohypoaldosteronism. Treatment aims to correct the hyperkalemia and the metabolic acidosis, and also it depends on the primary disease involved or aldosterone alteration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chan JCM, Mak RHK. Acid-base homeostasis. En: Avner ED, Harmon WE, Niaudet P. eds., Pediatric nephrology, 5th ed., Lippincott Williams & Wilkins, Philadelphia, 2004:189–208.

    Google Scholar 

  2. Halperin ML, Kamel KS, Goldstein MB. Polyuria. In: Halperin ML, Kamel KS, Goldstein MB, editors. Fluid, electrolyte, and acid-base physiology. 4th ed. Philadelphia: Saunders Elsevier; 2010. p. 403–22.

    Google Scholar 

  3. Jorgensen PL. Structure, function and, regulation of Na+, K+-ATPase in the kidney. Kidney Int. 1986;29:10–20.

    CAS  PubMed  Google Scholar 

  4. Nakhoul NL, Hamm LL. Vacuolar H+ATPase in the kidney. J Nephrol. 2002;15(Suppl 5):S22–31.

    CAS  PubMed  Google Scholar 

  5. Velazquez H, Perazella MA, Wright FS, Ellison DH. Renal mechanism of trimethoprim induced hyperkalemia. Ann Intern Med. 1993;119:296–301.

    CAS  PubMed  Google Scholar 

  6. Kleyman TR, Roberts C, Ling BN. A mechanism for pentamidine-induced hyperkalemia: inhibition of distal nephron sodium transport. Ann Intern Med. 1995;122:103–6.

    CAS  PubMed  Google Scholar 

  7. Hanukoglu I, Hanukoglu A. Epithelial sodium channel (ENaC) family: phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene. 2016;579(2):95–132. https://doi.org/10.1016/j.gene.2015.12.061. PMC 4756657. PMID 26772908.

  8. Silver RB, Mennit PA, Satlin LM. Stimulation of H+, K+ ATPase in intercalated cells of cortical collecting duct with chronic metabolic acidosis. Am J Phys. 1996;270:F539–47.

    CAS  Google Scholar 

  9. Gamba G. Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev. 2005;85(2):423–93. https://doi.org/10.1152/physrev.00011.2004

    CAS  PubMed  Google Scholar 

  10. Aker S, Heering P, Kinne-Saffran E, Deppe C, Grabensee B, Kinne RK. Different effects of cyclosporine a and FK506 on potassium transport systems in MDCK cells. Exp Nephrol. 2001;9:332–40.

    CAS  PubMed  Google Scholar 

  11. Kohda Y, Ding W, Phan E, Housini I, Wang J, Star RA, Huang CL. Localization of the ROMK potassium channel to the apical membrane of distal nephron in rat kidney. Kidney Int. 1998;54:1214–23.

    CAS  PubMed  Google Scholar 

  12. Melo Z, Cruz-Rangel S, Bautista R, Vázquez N, Castañeda-Bueno M, Mount DB, Gamba G. Molecular evidence for a role for K + -Cl − cotransporters in the kidney. Am J Physiol Renal Physiol. 2013;305(10):F1402–11. https://doi.org/10.1152/ajprenal.00390.2013

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Grimm PR, Sansom SC. BK channels in the kidney. Curr Opin Nephrol Hypertens. 2007;16(5):430–6.

    CAS  PubMed  Google Scholar 

  14. Kamel KS, Ethier JH, Richardson RM, Bear RA, Halperin ML. Urine electrolytes and osmolality: when and how to use them. Am J Nephrol. 1990;10:89–102.

    CAS  PubMed  Google Scholar 

  15. Jo D. Renin-angiotensin system in the control of aldosterone secretion. In: Fisher JW, editor. Kidney hormones. New York: Academic Press; 1971. p. 173–205; 3. Mulroy PJ. The adrenal cortex. In Comroe Jr. JH, Alto P, editors. Annual review of physiology. Annual Reviews Inc.; 1972. p. 409–24.

    Google Scholar 

  16. Vallés PG, Batlle D. Hypokalemic distal renal tubular acidosis. Adv Chronic Kidney Dis. 2018;25(4):303–20.

    PubMed  Google Scholar 

  17. Halperin ML, Kamel KS. Potassium. Lancet. 1998;352:135–42.

    CAS  PubMed  Google Scholar 

  18. Spat A, Hunyady L. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev. 2004;84:489–539.

    CAS  PubMed  Google Scholar 

  19. Palmer LG, Antonian L, Frindt G. Regulation of the Na-K pump of the rat cortical collecting tubule by aldosterone. J Gen Physiol. 1993;102:43–57.

    CAS  PubMed  Google Scholar 

  20. Chen SY, Bhargava A, Mastroberardino L, et al. Epithelial sodium channel regulated by aldosterone-induced protein SGK. Proc Natl Acad Sci U S A. 1999;96:2514–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Vallon V, Wulff P, Huang DY, et al. Role of SGK1 in salt and potassium homeostasis. Am J Physiol Regul Integr Comp Physiol. 2005;288:R4–R10.

    CAS  PubMed  Google Scholar 

  22. Lang F, Stournaras C, Alesutan I. Regulation of transport across cell membranes by the serum- and glucocorticoid-inducible kinase SGK1. Mol Membr Biol. 2014;31:29–36.

    CAS  PubMed  Google Scholar 

  23. Loffing J, Flores SY, Staub O. Sgk kinases and their role in epithelial transport. Annu Rev Physiol. 2006;68:461–90.

    CAS  PubMed  Google Scholar 

  24. Pearce LR, Sommer EM, Sakamoto K, Wullschleger S, Alessi DR. Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochem J. 2011;436:169–79.

    CAS  PubMed  Google Scholar 

  25. Minuth WW, Gross P, Gilbert P, Kashgaria M. Expression of the a-subunit of Na/K-ATPase in renal collecting duct epithelium during development. Kidney Int. 1987;31:1104–12.

    CAS  PubMed  Google Scholar 

  26. Tannen RL. Potassium disorders. In: Kokko JP, Tannen RL, editors. Fluids and electrolytes. Philadelphia: WB Saunders; 1986. p. 150.

    Google Scholar 

  27. Greenbaum LA. Pathophysiology of body fluids and fluid therapy. Electrolyte and acid-base disorders. In: Behrman RE, Kliegman RM, Jenson HB, editors. Nelson textbook of pediatrics. 17th ed. Philadelphia: Saunders; 2004. p. 191–242.

    Google Scholar 

  28. Custer JW. Blood chemistries and body fluids. In: Custer JW, Rau RE, editors. Harriet Lane handbook. 18th ed. Philadelphia: Mosby; 2009. p. 677–88.

    Google Scholar 

  29. Satlin LM, Schwartz GJ. Metabolism of potassium. En Ichikawa I ed., Pediatric textbook of fluids and electrolytes. Williams & Wilkins, Baltimore; 1990: 89–98.

    Google Scholar 

  30. Jones DP, Chesney RW. Tubular function. In: Avner ED, Harmon WE, Niaudet P, editors. Pediatric nephrology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2004. p. 45–72.

    Google Scholar 

  31. Karet EF. Mechanisms in hyperkalemic renal tubular acidosis. J Am Soc Nephrol. 2009;20:251–4. https://doi.org/10.1681/ASN.2008020166.

    Article  CAS  PubMed  Google Scholar 

  32. Bidani A, Tuazon DM, Heming TA. Acid-base disorders. Regulation of whole-body acid-base balance. In: DuBose TD, Hamm LL, editors. Acid-Base and electrolyte disorders. Philadelphia: Saunders; 2002. p. 1–21.

    Google Scholar 

  33. Wang B, Wen D, Li H, Wang-France J, Sansom SC. Net K+ secretion in the thick ascending limb of mice on a low-Na, high-K diet. Kidney Int. 2017;92(4):864–75. https://doi.org/10.1016/j.kint.2017.04.009

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Arruda JA, Batlle DC, Sehy JT, Roseman MK, Baronowski RL, Kurtzman NA. Hyperkalemia and renal insufficiency: role of selective aldosterone deficiency and tubular unresponsiveness to aldosterone. Am J Nephrol. 1981;1(3–4):160–7.

    CAS  PubMed  Google Scholar 

  35. Schambelan M, Sebastian A. Type IV renal tubular acidosis: pathogenetic role of aldosterone deficiency and hyperkalemia. Nephrologie. 1985;6(3):135–7.

    CAS  PubMed  Google Scholar 

  36. Jones DP, Chesney RW. Tubular function. In: Avner ED, Harmon WE, Niaudet P, editors. Pediatric nephrology. 5th ed. Lippincott Williams & Wilkins, Philadelphia; 2004. p. 45–72.

    Google Scholar 

  37. Carrisoza-Gaytan R, Rangel C, Salvador C, Saldaña-Meyer R, Escalona C, Satlin LM, Liu W, Zavilowitz B, Joyce Trujillo J, Bobadilla NA, Escobar LI. The hyperpolarization-activated cyclic nucleotide-gated HCN2 channel transports ammonium in the distal nephron. Kidney Int. 2011;80:832–40. https://doi.org/10.1038/ki.2011.230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Endeward V, Cartron JP, Ripoche P, Gros G. RhAG protein of the rhesus complex is a CO2 channel in the human red cell membrane. FASEB J. 2008;22:64–73.

    CAS  PubMed  Google Scholar 

  39. Weiner ID, Hamm LL. Molecular mechanisms of renal ammonia transport. Annu Rev Physiol. 69: 317–340; Chan JCM, Mak RHK. Acid-base homeostasis. In: Avner ED, Harmon WE, Niaudet P, editors. Pediatric nephrology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2004. p. 189–208.

    Google Scholar 

  40. Finkel KW, DuBose TD. Metabolic acidosis. In: DuBose TD, Hamm LL, editors. Acid-base and electrolyte disorders. Philadelphia: Saunders; 2002. p. 55–66.

    Google Scholar 

  41. McSherry E. Current issues in hydrogen transport. En: Gruskin AB, Norman ME, eds, Pediatric nephrology. Hisham MA. Martinus Nijhoff, 1981: 403–415.

    Google Scholar 

  42. Kurtzman NA, White MG, Rogers PW. The effect of potassium and extracellular volume on renal bicarbonate reabsorption. Metabolism. 1973:22–481.

    Google Scholar 

  43. Schambelan M, Sebastian A, Biglieri E. Prevalence, pathogenesis, and functional significance of aldosterone deficiency in hyperkalemic patients with chronic renal insufficiency. Kidney Int. 1980:17–89.

    Google Scholar 

  44. Berend K. Review of the diagnostic evaluation of Normal anion gap metabolic acidosis. Kid Dis. 2017;3:149–59.

    Google Scholar 

  45. Speiser PW, Azziz R, Baskin LS, Ghizzoni L, Hensle TW, Merke DP. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency, En: Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95(9):4133–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Janzen N, Riepe FG, Peter M, Sander S, Steuerwald U, Korsch E, et al. Neonatal screening: identification of children with 11ß-hydroxylase deficiency by second-tier testing. Horm Res Paediatr. 2012;77(3):195–9.

    CAS  PubMed  Google Scholar 

  47. Chan LF, Campbell DC, Novoselova TV, Clark AJ, Metherell LA. Whole-exome sequencing in the differential diagnosis of primary adrenal insufficiency in children. Front Endocrinol (Lausanne). 2015;6:113.

    Google Scholar 

  48. Gill JR, Santos F, Chan JCM. Disorders of potassium metabolism. En: Kidney electrolyte disorders, Chan JCM, Gill JR. Churchill Livingston, New York, 1990: 137–170.

    Google Scholar 

  49. Sánchez MC, Hoffman V, Prieto GS, Hernández RJ, Espinosa G. Renal tubular acidosis type IV as a complication of lupus nephritis. Lupus. 2015;25:307–9.

    Google Scholar 

  50. Batlle DC, Arruda JA, Kurtzman NA. Hyperkalemic distal renal tubular acidosis associated with obstructive uropathy. N Engl J Med. 1981;304(7):373–80.

    CAS  PubMed  Google Scholar 

  51. Menegussi J, Tatagiba LS, Vianna JGP, Seguro AC, Luchi WM. A physiology-based approach to a patient with kyperkalemic renal tubular acidosis. J Bras Nefrol. 2018;40(4):410–7.

    PubMed  PubMed Central  Google Scholar 

  52. DeFronzo RA. Hyperkalemia and hyporeninemic hypoaldosteronism. Kidney Int. 1980;17(1):118.

    CAS  PubMed  Google Scholar 

  53. Chang SS, Grunder S, Hanukoglu A, Rosler A, Mathew PM, Hanukoglu I, Schild L, Lu Y, Shimkets RA, Nelson-Williams C, Rossier BC, Lifton RP. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet. 1996;12:248–53.

    CAS  PubMed  Google Scholar 

  54. Pujo L, Fagart J, Gary F, Papadimitriou DT, Claes A, Jeunemaitre X, Zennaro MC. Mineralocorticoid receptor mutations are the principal cause of renal type 1 pseudohypoaldosteronism. Hum Mutat. 2007;28:33–40.

    CAS  PubMed  Google Scholar 

  55. Geller DS, Zhang J, Zennaro MC, Vallo-Boado A, Rodriguez-Soriano J, et al. Autosomal dominant pseudohypoaldosteronism type 1: mechanisms, evidence for neonatal lethality, and phenotypic expression in adults. J Am Soc Nephrol. 2006;17:1429–36.

    CAS  PubMed  Google Scholar 

  56. Julie R. Ingelfinger. Etiology of childhood hypertension. En: Comprehensive pediatric nephrology, 2008 https://doi.org/10.1016/B978-0-323-04883-5.50049-0.

  57. Both T, Zietse R, Hoorn EJ, Van Hagen PM, Dalm VASH, Van Laar JAM, Van Daele PLA. Everything you need to know about distal renal tubular acidosis in autoimmune disease. Rheumatol Int. 2014;34:1037–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. New MI, Geller DS, Fallo F, Wilson RC. Monogenic low renin hypertension. Trends Endocrinol Metab. 2005;16(3):92–7.

    CAS  PubMed  Google Scholar 

  59. Kahle KT, Wilson FH, Leng Q, Lalioti MD, O'Connell AD, Dong K, Rapson AK, Giebisch G, Hebert SC, Lifton RP. WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat Genet. 2003;35(4):372–6.

    CAS  PubMed  Google Scholar 

  60. Avila Poletti D, De Azevedo L, Iommi C, Heldal K, Musso CG. Hyperchloremic metabolic acidosis in the kidney transplant patient. Postgrad Med. 2019;131(3):171–5.

    PubMed  Google Scholar 

  61. Weinstein AM. A mathematical model of rat cortical collecting duct: determinants of the transtubular potassium gradient. Am J Physiol Renal Physiol. 2001;280:F1072–92.

    CAS  PubMed  Google Scholar 

  62. West ML, Marsden PA, Richardson RM, Zettle RM, Halperin ML. New clinical approach to evaluate disorders of potassium excretion. Miner Electrolyte Metab. 1986;12:234–8.

    CAS  PubMed  Google Scholar 

  63. Field MJ, Stanton BA, Giebisch GH. Influence of ADH on renal potassium handling: a micropuncture and microperfusion study. Kidney Int. 1984;25:502–11.

    CAS  PubMed  Google Scholar 

  64. Choi MJ, Ziyadeh FN. The utility of the Transtubular potassium gradient in the evaluation of hyperkalemia. J Am Soc Nephrol. 2008;19(3):424–6. https://doi.org/10.1681/ASN.2007091017.

    Article  CAS  PubMed  Google Scholar 

  65. Rodriguez-Soriano J, Ubetagoyena M, Vallo A. Transtubular potassium concentration gradient: a useful test to estimate renal aldosterone bio-activity in infants and children. Pediatr Nephrol. 1990;4:105–10.

    CAS  PubMed  Google Scholar 

  66. Lee J, Moffet BS. Treatment of pediatric hyperkalemia with sodium polystyrene sulfonate. Pediatr Nephrol. 2016;31:2113–7.

    PubMed  Google Scholar 

  67. Villegas-Anzo F, Castellanos-Olivares A, Gracida-Juárez C, Rangel-Montes MA, Espinoza-Pérez R, Cancino-López J. Manejo de la hiperkalemia transoperatoria en pacientes con insuficiencia renal crónica sometidos a trasplante renal. Rev Mex Trans. 2013;2(2):50–7.

    Google Scholar 

  68. Santos F, Gil PH, Alvárez AS. Renal tubular acidosis. CurrOpinPediatr. 2017;29(2):206–10.

    CAS  Google Scholar 

  69. Voyer LA, Caupolican A. Hiperkalemia, Diagnóstico y tratamiento. Arch Argent Pediatr. 2000; 98(5): 337–44.

    Google Scholar 

  70. Ruiz-Mejía R, Ortega-Olivares LM, Naranjo-Carmona CA, Suárez-Otero R. Tratamiento de la hipercalemia en pacientes con enfermedad renal crónica en terapia dialítica. Med Int Méx. 2017;33(6):778–96.

    Google Scholar 

  71. Kamel KS, Wei C. Controversial issues in the treatment of hyperkalaemia. Nephrol Dial Transplant. 2003;18:2215–8.

    PubMed  Google Scholar 

  72. Dhayat N, Gradwell M, Anderegg M, Schneider L, Luethi D, Mattmann C, et al. Furosemide/fludrocortisone test and clinical parameters to diagnose incomplete distal renal tubular acidosis in kidney stone formers. Clin J Am Soc Nephrol. 2017;12:1507–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. DeFronso RA. Hyperkalemia and hyporeninemic hypoaldosteronism. Nephrology forum. Kidney Int. 1980;7:118–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lagunas-Muñoz, J., Muñoz, R. (2022). Hyperkalemic Renal Tubular Acidosis (RTA Type IV). In: Muñoz, R. (eds) Renal Tubular Acidosis in Children. Springer, Cham. https://doi.org/10.1007/978-3-030-91940-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91940-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91939-9

  • Online ISBN: 978-3-030-91940-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics