Skip to main content

Dual Coulomb Counting Extended Kalman Filter for Battery SOC Determination

  • Conference paper
  • First Online:
Optimization, Learning Algorithms and Applications (OL2A 2021)

Abstract

The importance of energy storage continues to grow, whether in power generation, consumer electronics, aviation, or other systems. Therefore, energy management in batteries is becoming an increasingly crucial aspect of optimizing the overall system and must be done properly. Very few works have been found in the literature proposing the implementation of algorithms such as Extended Kalman Filter (EKF) to predict the State of Charge (SOC) in small systems such as mobile robots, where in some applications the computational power is severely lacking. To this end, this work proposes an implementation of the two algorithms mainly reported in the literature for SOC estimation, in an ATMEGA328P microcontroller-based BMS. This embedded system is designed taking into consideration the criteria already defined for such a system and adding the aspect of flexibility and ease of implementation with an average error of 5% and an energy efficiency of 94%. One of the implemented algorithms performs the prediction while the other will be responsible for the monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marwedel, P.: Embedded Systems Foundations of Cyber-Physical Systems, and the Internet of Things. Springer Nature (2021)

    Google Scholar 

  2. Park, K.-H., Kim, C.-H., Cho, H.-K., Seo, J.-K.: Design considerations of a lithium ion battery management system (BMS) for the STSAT-3 satellite. J. Power Electron. 10(2), 210–217 (2010)

    Article  Google Scholar 

  3. Megnafi, H., Chellal, A.-A., Benhanifia, A.: Flexible and automated watering system using solar energy. In: International Conference in Artificial Intelligence in Renewable Energetic Systems, pp. 747–755. Springer, Cham, Tipaza (2020). https://doi.org/10.1007/978-3-030-63846-7_71

  4. Xia, B., Lao, Z., Zhang, R., et al.: Online parameter identification and state of charge estimation of lithium-ion batteries based on forgetting factor recursive least squares and nonlinear Kalman filter. Energies 11(1), 3 (2018)

    Article  Google Scholar 

  5. Hannan, M.A., Lipu, M.H., Hussain, A., et al.: Toward enhanced State of charge estimation of Lithium-ion Batteries Using optimized Machine Learning techniques. Sci. Rep. 10(1), 1–15 (2020)

    Article  Google Scholar 

  6. Thomas, B.-R.: Linden’s Handbook of Batteries, 4th edn. McGraw-Hill Education, New York (2011)

    Google Scholar 

  7. Taborelli, C., Onori, S., Maes, S., et al.: Advanced battery management system design for SOC/SOH estimation for e-bikes applications. Int. J. Powertrains 5(4), 325–357 (2016)

    Article  Google Scholar 

  8. Mouna, A., Abdelilah, B., M’Sirdi, N.-K.: Estimation of the state of charge of the battery using EKF and sliding mode observer in Matlab-Arduino/LabView. In: 4th International Conference on Optimization and Applications, pp. 1–6. IEEE, Morocco (2018)

    Google Scholar 

  9. Sanguino, T.-D.-J.-M., Ramos, J.-E.-G.: Smart host microcontroller for optimal battery charging in a solar-powered robotic vehicle. IEEE/ASME Trans. Mechatron. 18(3), 1039–1049 (2012)

    Article  Google Scholar 

  10. REC-BMS.: Battery Management System 4–15S. REC, Control your power, Slovenia (2017)

    Google Scholar 

  11. Robote, Q.: BMS10x0, B40/60V, 100 Amps Management System for Lithium Ion Batteries. RoboteQ, USA (2018)

    Google Scholar 

  12. Kim, I.-S.: A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer. IEEE Trans. Power Electron. 25(4), 1013–1022 (2009)

    Google Scholar 

  13. Mastali, M., Vazquez-Arenas, J., Fraser, R.: Battery state of the charge estimation using Kalman filtering. J. Power Sources 239, 294–307 (2013)

    Article  Google Scholar 

  14. Campestrini, C., Heil, T., Kosch, S., Jossen, A.: A comparative study and review of different Kalman filters by applying an enhanced validation method. J. Energ. Storage 8, 142–159 (2016)

    Article  Google Scholar 

  15. Bishop, G., Welch, G.: An introduction to the kalman filter. In: Proceedings of SIGGRAPH, Course. Proceedings of SIGGRAPH, vol. 41, pp. 27599–23175 (2001)

    Google Scholar 

  16. Campestrini, C., Horsche, M.-F., Zilberman, I.: Validation and benchmark methods for battery management system functionalities: state of charge estimation algorithms. J. Energ. Storage 7, 38–51 (2016)

    Article  Google Scholar 

  17. Yuan, S., Wu, H., Yin, C.: State of charge estimation using the extended Kalman filter for battery management systems based on the ARX battery model. Energies 6(1), 444–470 (2013)

    Article  Google Scholar 

  18. Marian, N., Ma, Y.: Translation of simulink models to component-based software models. In: 8th International Workshop on Research and Education in Mechatronics, pp. 262–267. Citeseer, Location (2007)

    Google Scholar 

  19. Hu, T., Zanchi, B., Zhao, J.: Determining battery parameters by simple algebraic method. In: Proceedings of the 2011 American Control Conference, pp. 3090–3095. IEEE, San Francisco (2011)

    Google Scholar 

  20. Xu, Y., Hu, M., Zhou, A., et al.: State of charge estimation for lithium-ion batteries based on adaptive dual Kalman filter. Appl. Math. Modell. 77(5), 1255–1272 (2020)

    Article  MathSciNet  Google Scholar 

  21. Mazidi, M.-A., Naimi, S., Naimi, S.: AVR Microcontroller and Embedded Systems. Pearson, India (2010)

    Google Scholar 

  22. ABLIC INC.: S-8254A Series Battery Protection IC for 3-Serial- or 4-Serial-CELL Pack REV.5.2. ABLIC, Japan (2016)

    Google Scholar 

  23. Chatzakis, J., Kalaitzakis, K., Voulgaris, C., Manias, N.-S.: Designing a new generalized battery management system. IEEE Trans. Ind. Electron. 50(5), 990–999 (2003)

    Article  Google Scholar 

  24. Chen, L., Xu, L., Wang, R.: State of charge estimation for lithium-ion battery by using dual square root cubature kalman filter. Mathematical Problems in Engineering 2017 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arezki A. Chellal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chellal, A.A., Lima, J., Gonçalves, J., Megnafi, H. (2021). Dual Coulomb Counting Extended Kalman Filter for Battery SOC Determination. In: Pereira, A.I., et al. Optimization, Learning Algorithms and Applications. OL2A 2021. Communications in Computer and Information Science, vol 1488. Springer, Cham. https://doi.org/10.1007/978-3-030-91885-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91885-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91884-2

  • Online ISBN: 978-3-030-91885-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics