Skip to main content

Advanced Polymers in Aircraft Structures

  • Chapter
  • First Online:
Materials, Structures and Manufacturing for Aircraft

Part of the book series: Sustainable Aviation ((SA))

Abstract

Recently polymer composites have been in high demand for various types of aircraft applications due to their positive and significant impact. Thirty to forty-five percent of the latest aircraft frames are now made with the help of composite materials and the percentage is increasing day by day due to major technological advances in the sector. Polymer materials are commonly used in aviation because of their mechanical, tribological, and structural properties that reduce weight. Old-fashioned materials are subject to oxidation and fatigue, whereas the composite material is resistant to both. Due to the hardness and high strength of the fiber, the polymer compound gives excellent rigidity and strength to the weight ratio; they have good shear properties and low density. Aircraft designers and engineers are moving toward the next generation of integrated materials to make their aircraft more powerful, more fuel-efficient, and lighter. This review paper gives a brief overview of the polymer composite material, components of an aircraft structure, manufacturing process, its properties, and way ahead for composites in aircraft application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Njuguna, J., & Pielichowski, K. (2003). Polymer nanocomposites for aerospace applications: Properties. Advanced Engineering Materials, 5(11), 769–778.

    Article  Google Scholar 

  2. Williams, G., Trask, R., & Bond, I. (2007). A self-healing carbon fibre reinforced polymer for aerospace applications. Composites Part A: Applied Science and Manufacturing, 38(6), 1525–1532.

    Article  Google Scholar 

  3. Irving, P. E., & Soutis, C. (2019). Polymer composites in the aerospace industry. Woodhead Publishing.

    Google Scholar 

  4. Pan, Z., Wang, M., Chen, J., Shen, B., Liu, J., & Zhai, J. (2018). Largely enhanced energy storage capability of polymer nanocomposite utilizing a core-satellite strategy. Nanoscale, 10, 16621–16629.

    Article  Google Scholar 

  5. Oliver, L. I., Anderson, T. R., & Robert, R. H. (2006). Predicting U.S. jet fighter aircraft introductions from 1944 to 1982: A dogfight between regression and TFDEA. Technological Forecasting and Social Change, 73(9), 1178–1187.

    Article  Google Scholar 

  6. Ghori, S. W. (2018). Sustainable composites for aerospace applications || The role of advanced polymer materials in aerospace. pp. 19–34.

    Google Scholar 

  7. Alemour, B., Badran, O., & Hassan, M. R. (2019). A review of using conductive composite materials in solving lightening strike and ice accumulation problems in aviation. Journal of Aerospace Technology and Management, 11(1), 219–219.

    Google Scholar 

  8. Vasile, B. S., Birca, A. C., Surdu, V. A., Neacsu, I. A., & Nicoară, A. I. (2020). Ceramic composite materials obtained by electron-beam physical vapor deposition used as thermal barriers in the aerospace industry. Nano, 10(2), 370.

    Google Scholar 

  9. Zhang, X., Chen, Y., & Hu, J. (2018). Recent advances in the development of aerospace materials. Progress in Aerospace Science, 97, 22–34.

    Article  Google Scholar 

  10. Soutis, C. (2020). Polymer composites in the aerospace industry || Aerospace engineering requirements in building with composites, pp. 3–22.

    Google Scholar 

  11. Freeman, W. T. (1993). The use of composites in aircraft primary structure. Composites Engineering, 3(7–8), 767–775.

    Article  Google Scholar 

  12. Suhara, P., & Mohini, S. (2007). Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites—Mechanical, water absorption and thermal properties. Applied Polymer, 103(4), 2432–2441.

    Article  Google Scholar 

  13. Di, S. R. (2015). Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications. Sensors, 15(8), 18666–18713.

    Article  Google Scholar 

  14. Yadav, R., Tirumali, M., Wang, X., Naebe, M., & Kandasubramanian, B. (2019). Polymer composite for antistatic application in aerospace. Defence Technology, 16, 107–118.

    Article  Google Scholar 

  15. Ma, Y., Yang, Y., Sugahara, T., & Hamada, H. (2016). A study on the failure behavior and mechanical properties of unidirectional fiber reinforced thermosetting and thermoplastic composites. Composites: Part B, 99, 162–172.

    Article  Google Scholar 

  16. John, D., & Muzzy, A. O. (1984). Thermoplastic vs. thermosetting structural composites. Polymer Composites, 5(3), 169–172.

    Article  Google Scholar 

  17. Dhinakaran, V., Surendar, K. V., Hasunfur Riyaz, M. S., & Ravichandran, M. (2020). Review on study of thermosetting and thermoplastic materials in the automated fiber placement process. Materials Today: Proceedings, 27, 812–815.

    Google Scholar 

  18. Yao, Y., Wang, J., Lu, H., Xu, B., Fu, Y., Liu, Y., & Leng, J. (2015). Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties. Smart Materials and Structures, 25(1), 015021.

    Article  Google Scholar 

  19. Haque, A., & Jeelani, S. (1992). Environmental effects on the compressive properties: Thermosetting vs. thermoplastic composites. Journal of Reinforced Plastics and Composites, 11(2), 146–157.

    Article  Google Scholar 

  20. George, M. (2012). Aero engines lose weight thanks to composites. Reinforced Plastics, 56(6).

    Google Scholar 

  21. Amoo, L. M. (2013). On the design and structural analysis of jet engine fan blade structures. Progress in Aerospace Science, 60, 1–11.

    Article  Google Scholar 

  22. Mehar, A. K. (2020). Transient effect of aircraft propeller blade by using composites. International Journal of Engineering Research & Technology, 9(8), 1–6.

    Google Scholar 

  23. Min, J. B., Duffy, K. P., Choi, B. B., Provenza, A. J., & Kray, N. (2013). Numerical modeling methodology and experimental study for piezoelectric vibration damping control of rotating composite fan blades. Computers and Structures, 128, 230–242.

    Article  Google Scholar 

  24. Colvin, G. E., & Swanson, S. R. (1990). Mechanical characterization of IM7/8551-7 carbon/epoxy under biaxial stress. Journal of Engineering Materials and Technology, 112(1), 61.

    Article  Google Scholar 

  25. Srinivas, Y. P., Ramalingam, T., Bari, B. S., & Sharada, P. C. (2020). Development of composite mounting bracket for aerospace applications. Materials Today: Proceedings, 26, 1356–1359.

    Google Scholar 

  26. Holmes, M. (2017). Aerospace looks to composites for solutions. Reinforced Plastics, 61(4), 237–241.

    Article  MathSciNet  Google Scholar 

  27. Koli, D. K., Agnihotri, G., & Purohit, R. (2015). Advanced aluminium matrix composites: The critical need of automotive and aerospace engineering fields. Materials Today: Proceedings, 2(4–5), 3032–3041.

    Google Scholar 

  28. Mun, W. C., Rivai, A., & Bapokutty, O. (2014). Design and analysis of an aircraft composite hinge bracket using finite element approach. Applied Mechanics and Materials, 629, 158–163.

    Article  Google Scholar 

  29. Thuis, H. G. S. J., & Biemans, C. (1997). Design, fabrication and testing of a composite bracket for aerospace applications. Composite Structures, 38(1–4), 91–98.

    Article  Google Scholar 

  30. Marsh, G. (2013). Composites poised to transform airline economics. Reinforced Plastics, 57(3), 18–24.

    Article  Google Scholar 

  31. Scarponi, C., Santulli, C., Sarasini, F., & Tirillò, J. (2017). Green composites for aircraft interior panels. International Journal of Sustainable Aviation, 3(3), 252.

    Article  Google Scholar 

  32. Heimbs, S., Vogt, D., Hartnack, R., Schlattmann, J., & Maier, M. (2008). Numerical simulation of aircraft interior components under crash loads. International Journal of Crashworthiness, 13(5), 511–521.

    Article  Google Scholar 

  33. Retrieved March 23, 2021, from http://www.matweb.com/search/GetMatlsByTradename.aspx?navletter=C&tn=CYCOM%C2%AE.

  34. Retrieved March 26, 2021, from https://www.stratasysdirect.com/industries/aerospace/3d-printing-transforming-aircraft-interiors.

  35. Retrieved March 26, 2021, from https://www.lucintel.com/aircraft-interior-composites-market.aspx.

  36. Kozaczuk, K. (2017). Engine nacelles design—Problems and challenges. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 231(12), 2259–2265.

    Article  Google Scholar 

  37. Kalagi, G. R., Patil, R., & Nayak, N. (2018). Experimental study on mechanical properties of natural fiber reinforced polymer composite materials for wind turbine blades. Materials Today: Proceedings, 5(1), 2588–2596.

    Google Scholar 

  38. Kidangan, R. T., Venkata, K., & Balasubramaniam, K. (2020). Detection of dis-bond between honeycomb and composite facesheet of an Inner Fixed Structure bond panel of a jet engine nacelle using infrared thermographic techniques. Quantitative InfraRed Thermography Journal, 1–15.

    Google Scholar 

  39. McGarel, W., & Campbell, K. (1990). SAE Technical Paper Series [SAE International Aerospace Technology Conference and Exposition—(OCT. 01, 1990)] SAE Technical Paper Series, Development of Composite Materials Applications to Production Nacelle Component Structures, 1.

    Google Scholar 

  40. Dudziak, J., Guła, P., Gawlik, A., & Kondracki, J. (2017). Design and manufacture of nacelles for small turboprop aircraft. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 231(12), 2239–2247.

    Article  Google Scholar 

  41. Santhosh Kumar, K. S., Reghunadhan Nair, C. P., Sadhana, R., & Ninan, K. N. (2007). Benzoxazine–bismaleimide blends: Curing and thermal properties. European Polymer Journal, 43(12), 5084–5096.

    Article  Google Scholar 

  42. Der-Jang, L., Kung-Li, W., Ying-Chi, H., Kueir-Rarn, L., Juin-Yih, L., & Chang-Sik, H. (2012). Advanced polyimide materials: Syntheses, physical properties and applications. Progress in Polymer Science, 37(7), 907–974.

    Article  Google Scholar 

  43. Haddadpour, H., Kouchakzadeh, M. A., & Shadmehri, F. (2008). Aeroelastic instability of aircraft composite wings in an incompressible flow. Composite Structures, 83(1), 93–99.

    Article  Google Scholar 

  44. Smith, F., & Grant, C. (2006). Automated processes for composite aircraft structure. Industrial Robot: An International Journal, 33(2), 117–121.

    Article  Google Scholar 

  45. Wölcken, P. C., & Papadopoulos, M. (Eds.). (2015). Smart intelligent aircraft structures (SARISTU): Proceedings of the final project conference. Springer.

    Google Scholar 

  46. Retrieved March 26, 2021, from https://eandt.theiet.org/content/articles/2020/03/making-future-aircraft-wings-through-composites-manufacturing/.

  47. Manan, A., & Cooper, J. (2009). Design of composite wings including uncertainties: A probabilistic approach. Journal of Aircraft, 46(2), 601–607.

    Article  Google Scholar 

  48. Retrieved March 26, 2021, from https://www.eaircraftsupply.com/MSDS/93251Cytec%20CYCOM%20890%20RTM%20tds.pdf.

  49. Mou, H., Xie, J., & Feng, Z. (2020). Research status and future development of crashworthiness of civil aircraft fuselage structures: An overview. Progress in Aerospace Science, 119, 100644.

    Article  Google Scholar 

  50. Richard, D., Raimund, R., Rolf, Z., & Klaus, R. (2006). COCOMAT—Improved material exploitation of composite airframe structures by accurate simulation of postbuckling and collapse. Composite Structures, 73(2), 175–178.

    Article  Google Scholar 

  51. Mabson, G., Flynn, B., Ilcewicz, L., & Graesser, D. (1994). [American Institute of Aeronautics and Astronautics 35th Structures, Structural Dynamics, and Materials Conference—Hilton Head, SC, U.S.A. (18 April 1994–20 April 1994)] 35th Structures, Structural Dynamics, and Materials Conference—The use of COSTADE in developing composite commercial aircraft fuselage structures.

    Google Scholar 

  52. Zimmermann, R., & Rolfes, R. (2006). POSICOSS—Improved postbuckling simulation for design of fibre composite stiffened fuselage structures. Composite Structures, 73(2), 171–174.

    Article  Google Scholar 

  53. Al-Ahmed, S., & Fielding, J. P. (1999). Vulnerability prediction method for use in aircraft conceptual design. The Aeronautical Journal, 103(1024), 309–315.

    Article  Google Scholar 

  54. Quatmann, M., & Reimerdes, H. G. (2011). Preliminary design of composite fuselage structures using analytical rapid sizing methods. CEAS Aeronautical Journal, 2(1–4), 231–241.

    Article  Google Scholar 

  55. Bohon, H. L. (1982). Opportunities for composites in commercial transport structures. Advanced Materials Technology, NASA, CP-2251, 1–27.

    Google Scholar 

  56. Comer, A. J., Ray, D., Obande, W. O., Jones, D., Lyons, J., Rosca, I., O’Higgins, R. M., & McCarthy, M. A. (2015). Mechanical characterisation of carbon fibre–PEEK manufactured by laser-assisted automated-tape-placement and autoclave. Composites Part A: Applied Science and Manufacturing, 69, 10–20.

    Article  Google Scholar 

  57. Laurenzi, S., & Marchetti, M. (2012). Advanced composite materials by resin transfer molding for aerospace applications. Composites and Their Properties, 197–226.

    Google Scholar 

  58. Denkena, B., Schmidt, C., & Weber, P. (2016). Automated fiber placement head for manufacturing of innovative aerospace stiffening structures. Procedia Manufacturing, 6, 96–104.

    Article  Google Scholar 

  59. Nguyen, N. Q., Mehdikhani, M., Straumit, I., Gorbatikh, L., Lessard, L., & Lomov, S.V(2017). Micro-CT measurement of fibre misalignment: Application to carbon/epoxy laminates manufactured in autoclave and by vacuum assisted resin transfer moulding. Composites Part A: Applied Science and Manufacturing, 104, 14–23.

    Google Scholar 

  60. Chensong, D. (2008). A modified rule of mixture for the vacuum-assisted resin transfer moulding process simulation. Composites Science and Technology, 68(9), 2125–2133.

    Article  Google Scholar 

  61. Kathleen, V. V., & Paul, K. (2001). Thermoplastic pultrusion of natural fibre reinforced composites. Composite Structures, 54(2–3), 355–360.

    Google Scholar 

  62. Miller, A. H., Dodds, N., Hale, J.M., & Gibson, A.G. (1998). High speed pultrusion of thermoplastic matrix composites. Composites Part A: Applied Science and Manufacturing, 29(7), 0–782.

    Google Scholar 

  63. Abdalla, F. H., Mutasher, S. A., Khalid, Y. A., Sapuan, S. M., Hamouda, A. M. S., Sahari, B. B., & Hamdan, M. M. (2007). Design and fabrication of low cost filament winding machine. Materials and Design, 28(1), 234–239.

    Article  Google Scholar 

  64. Lossie, M., & Van Brussel, H. (1994). Design principles in filament winding. Composites Manufacturing, 5(1), 5–13.

    Article  Google Scholar 

  65. Hubert, P. (2012). Manufacturing Techniques for Polymer Matrix Composites (PMCs). In Autoclave processing for composites, (pp. 414–434).

    Google Scholar 

  66. Wang, Q., Wang, L., Zhu, W., Xu, Q., & Ke, Y. (2017). Design optimization of molds for autoclave process of composite manufacturing. Journal of Reinforced Plastics and Composites, 36, 1564–1576.

    Article  Google Scholar 

  67. Park, S. Y., Choi, C. H., Choi, W. J., & Hwang, S. S. (2018). A comparison of the properties of carbon fiber epoxy composites produced by non-autoclave with vacuum bag only prepreg and autoclave process. Applied Composite Materials, 26, 187–204.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catalin I. Pruncu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajak, D.K., Wagh, P.H., Kumar, A., Behera, A., Pruncu, C.I. (2022). Advanced Polymers in Aircraft Structures. In: Kuşhan, M.C., Gürgen, S., Sofuoğlu, M.A. (eds) Materials, Structures and Manufacturing for Aircraft. Sustainable Aviation. Springer, Cham. https://doi.org/10.1007/978-3-030-91873-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91873-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91872-9

  • Online ISBN: 978-3-030-91873-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics