Skip to main content

Design, Analysis, and Production of Lattice Structures Through Powder Bed Fusion Additive Manufacturing

  • Chapter
  • First Online:
Materials, Structures and Manufacturing for Aircraft

Part of the book series: Sustainable Aviation ((SA))

  • 1558 Accesses

Abstract

Development of powder bed fusion additive manufacturing technologies enabled the introduction of novel components into various industries such as aerospace, biomedical, mold, and die. These novel components, which can be produced by powder bed fusion additive manufacturing, possess several advantages including internal features, lightweight structures, and integrated functionalities. Components with lattice structures are typical examples that possess most of the listed advantages. Lattice structures can be described as volumes or solids which mostly contain internal voids or spaces arrayed along with one or more directions in an orderly manner. They are categorized under three main groups as strut-based lattice structures, shell lattice structures, and triply periodic minimal surface lattice structures. Although their advantages are compelling for various industries, a sufficient understanding is essential to have the benefits. This chapter broadly presents the types and characteristics of lattice structures together with used analytical techniques. Furthermore, it explains different approaches for the design and analysis of these, considering the topology optimizations and the software used. Additionally, discussions on powder bed fusion additive manufacturing of lattice structures are included in the chapter with different aspects of the technique including but not limited to process parameters and process boundaries. All the provided information is supported with application examples from various industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

AM:

Additive manufacturing

BCC:

Body-centered cubic

BCCZ:

Body-centered cubic-reinforced along Z-axis

CAD:

Computer-aided design

DC:

Diamond cubic

FCC:

Face-centered cubic

FCCZ:

Face-centered cubic along Z-axis

FEA:

Finite element analysis

FEM:

Finite element method

OT:

Octet Truss

PBF:

Powder bed fusion

SC:

Simple cubic

TPMS:

Triply periodic minimal surface lattice structures

References

  1. Gibson, L., & Ashby, M. (1997). Introduction. In Cellular solids: Structure and properties (Cambridge Solid State Science Series) (pp. 1–14). Cambridge University Press. https://doi.org/10.1017/CBO9781139878326.003

    Chapter  Google Scholar 

  2. LeMay, J. D., Hopper, R., Hrubesh, L. W., & Pekala, R. W. (1990). Low-density microcellular materials: Introduction. MRS Bulletin, 15(12), 19–20.

    Google Scholar 

  3. Suh, K. W., & Skochdopole, R. E. (1980). In Kirk-Othmer (Ed.), Encyclopedia of chemical technology (Vol. II, 3rd ed., p. 82).

    Google Scholar 

  4. Kooistra, G. W., Deshpande, V. S., & Wadley, H. N. (2004). Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium. Acta Materialia, 52(14), 4229–4237.

    Google Scholar 

  5. Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O., & Brandt, M. (2019). SLM lattice structures: Properties, performance, applications and challenges. Materials & Design, 183, 108137.

    Google Scholar 

  6. Zok, F. W., Latture, R. M., & Begley, M. R. (2016). Periodic truss structures. Journal of the Mechanics and Physics of Solids, 96, 184–203.

    MATH  Google Scholar 

  7. Hanks, B., Berthel, J., Frecker, M., & Simpson, T. W. (2020). Mechanical properties of additively manufactured metal lattice structures: Data review and design interface. Additive Manufacturing, 35, 101301.

    Google Scholar 

  8. Maxwell, J. C. (1864). Relaxing in foam. Philosophical Magazine, 27(250.1864).

    Google Scholar 

  9. Ashby, M. F. (2006). The properties of foams and lattices. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1838), 15–30.

    MathSciNet  Google Scholar 

  10. Austermann, J., Redmann, A. J., Dahmen, V., Quintanilla, A. L., Mecham, S. J., & Osswald, T. A. (2019). Fiber-reinforced composite sandwich structures by co-curing with additive manufactured epoxy lattices. Journal of Composites Science, 3(2), 53.

    Google Scholar 

  11. Bonatti, C., & Mohr, D. (2019). Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: Simulations & experiments. Journal of the Mechanics and Physics of Solids, 122, 1–26.

    Google Scholar 

  12. Tancogne-Dejean, T., Diamantopoulou, M., Gorji, M. B., Bonatti, C., & Mohr, D. (2018). 3D plate-lattices: An emerging class of low-density metamaterial exhibiting optimal isotropic stiffness. Advanced Materials, 30(45), 1803334.

    Google Scholar 

  13. Yan, C., Hao, L., Hussein, A., Young, P., & Raymont, D. (2014). Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Materials & Design, 55, 533–541.

    Google Scholar 

  14. Maskery, I., Aboulkhair, N. T., Aremu, A. O., Tuck, C. J., & Ashcroft, I. A. (2017). Compressive failure modes and energy absorption in additively manufactured double gyroid lattices. Additive Manufacturing, 16, 24–29.

    Google Scholar 

  15. Zadpoor, A. A. (2015). Bone tissue regeneration: The role of scaffold geometry. Biomaterials Science, 3(2), 231–245.

    Google Scholar 

  16. Pan, C., Han, Y., & Lu, J. (2020). Design and optimization of lattice structures: A review. Applied Sciences, 10(18), 6374.

    Google Scholar 

  17. Retrieved from https://www.materialise.com/en/software/3-matic.

  18. Retrieved from https://knowledge.autodesk.com/support/netfabb/learn-explore/caas/CloudHelp/cloudhelp/2020/ENU/NETF/files/GUID-7C5857A1-501E-406B-9632-6EEBD603FE29-htm.html.

    Google Scholar 

  19. Retrieved from https://community.sw.siemens.com/s/article/introducing-lattice-in-nx.

  20. Retrieved from https://support.ptc.com/help/creo/creo_pma/r6.0/usascii/index.html#page/part_modeling/part_modeling/part_nine_sub/To_Create_Formula_Driven_Lattice.html.

  21. Sienkiewicz, J., Płatek, P., Jiang, F., Sun, X., & Rusinek, A. (2020). Investigations on the mechanical response of gradient lattice structures manufactured via SLM. Metals, 10(2), 213.

    Google Scholar 

  22. Kladovasilakis, N., Tsongas, K., & Tzetzis, D. (2021). Mechanical and FEA-assisted characterization of fused filament fabricated triply periodic minimal surface structures. Journal of Composites Science, 5(2), 58.

    Google Scholar 

  23. Helou, M., Vongbunyong, S., & Kara, S. (2016). Finite element analysis and validation of cellular structures. Procedia CIRP, 50, 94–99.

    Google Scholar 

  24. Smith, M., Guan, Z., & Cantwell, W. J. (2013). Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. International Journal of Mechanical Sciences, 67, 28–41.

    Google Scholar 

  25. Xiao, Z., Yang, Y., Xiao, R., Bai, Y., Song, C., & Wang, D. (2018). Evaluation of topology-optimized lattice structures manufactured via selective laser melting. Materials & Design, 143, 27–37.

    Google Scholar 

  26. Xu, Y., Zhang, D., Zhou, Y., Wang, W., & Cao, X. (2017). Study on topology optimization design, manufacturability, and performance evaluation of Ti-6Al-4V porous structures fabricated by selective laser melting (SLM). Materials, 10(9), 1048.

    Google Scholar 

  27. Retrieved from https://insider.altairhyperworks.com/design-and-optimization-of-lattice-structures-for-3d-printing-using-altair-optistruct/.

  28. Retrieved from https://ntopology.com/resources/whitepaper-implicit-modeling-technology/#:~:text=At%20the%20core%20of%20nTopology,to%20describe%20a%20solid%20body.

  29. Retrieved from https://tritoneam.com/wp-content/uploads/Ampower-Insights-vol.-6-New-Technologies-1.pdf.

  30. Zhang, L.-C., Attar, H., Calin, M., & Eckert, J. (2016). Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications. Materials Technology, 31(2), 66–76.

    Google Scholar 

  31. Wenjin, W., Tor, S. B., Leong, K., Chua, C. & Merchant, A. (2016). State of the art review on selective laser melting of stainless steel for future applications in the marine industry. In 2nd international conference on progress in additive manufacturing (Pro-AM 2016) in Singapore.

    Google Scholar 

  32. Zhang, B., Li, Y., & Bai, Q. (2017). Defect formation mechanisms in selective laser melting: A review. Chinese Journal of Mechanical Engineering, 30, 515–527.

    Google Scholar 

  33. Gunasekaran, J., Sevvel, P., & Solomon, I. J. (2021). Metallic materials fabrication by selective laser melting: A review. Materials Today: Proceedings., 37(2), 252–256.

    Google Scholar 

  34. Guagliano, M., Previtali, B., Rampino, L., Rosa, E. & Galimberti, G. (2015). Digital aesthetic of new products obtained by selective laser melting process. In Proceedings of the 20th international conference on engineering design, Milan, Italy.

    Google Scholar 

  35. Thomas, D. (2009). The development of design rules for selective laser melting the development of design rules for selective laser melting. Ph.D. Thesis, University of Wales Institute, Cardiff, UK.

    Google Scholar 

  36. Barroqueiro, B., Andrade-Campos, A., & Valente, R. A. F. (2019). Designing self supported SLM structures via topology optimization. Journal of Manufacturing and Materials Processing, 3(3), 68.

    Google Scholar 

  37. Sames, W. J., List, F. A., Pannala, S., Dehoff, R. R., & Babu, S. S. (2016). The metallurgy and processing science of metal additive manufacturing. International Materials Reviews, 61(5), 315–360.

    Google Scholar 

  38. Gruber, S., Grunert, C., Mirko, R., Lopez, E., Marquardt, A., Brueckner, F., & Leyens, C. (2020). Comparison of dimensional accuracy and tolerances of powder bed based and nozzle based additive manufacturing processes. Journal of Laser Applications, 32, 032016.

    Google Scholar 

  39. Sola, S., Defanti, S., Mantovani, S., Merulla, A., & Denti, L. (2020). Technological feasibility of lattice materials by laser-based powder bed fusion of A357.0. 3D Printing and Additive Manufacturing., 7(1). https://doi.org/10.1089/3dp.2019.0119

  40. Van Bael, S., Kerckhofs, G., Moesen, M., Pyka, G., Schrooten, J., & Kruth, J. P. (2011). Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Materials Science and Engineering: A., 528(24), 7423–7431.

    Google Scholar 

  41. Raymont, D., Yan, C., Hussein, A. & Young, P. (2011). Design and additive manufacturing of cellular lattice structures. Innovative Developments in Virtual and Physical Prototyping. https://doi.org/10.1201/b11341-40.

  42. Abele, E., Stoffregen, H. A., Klimkeit, K., Hoche, H., & Oechsner, M. (2015). Optimisation of process parameters for lattice structures. Rapid Prototyping Journal, 21(1), 117–127.

    Google Scholar 

  43. Patterson, A. E., Messimer, S. L., & Farrington, P. A. (2017). Overhanging features and the SLM/DMLS residual stresses problem. Review and Future Research Need. Technologies, 5(15). https://doi.org/10.3390/technologies5020015

  44. Cloots, M., Zumofen, L., Spierings, A. B., Kirchheim, A., & Wegener, K. (2017). Approaches to minimize overhang angles of SLM parts. Rapid Prototyping Journal, 23(2), 362–369. https://doi.org/10.1108/RPJ-05-2015-0061

    Article  Google Scholar 

  45. Paggi, U., Sinico, M., Thijs, L., Dewulf, W. & Hooreweder, B. (2019). Improving the dimensional accuracy of downfacing surfaces of additively manufactured parts. In Proceedings of the special interest group meeting on advancing precision in additive manufacturing. Nantes, France.

    Google Scholar 

  46. Wang, D., Mai, S., Xiao, D., & Yang, Y. (2016). Surface quality of the curved overhanging structure manufactured from 316-L stainless steel by SLM. International Journal of Advanced Manufacturing Technology, 86, 781–792. https://doi.org/10.1007/s00170-015-8216-6

    Article  Google Scholar 

  47. Leary, M., Mazur, M., Elambasseril, J., McMillan, M., Chirent, T., Sun, Y., Qian, M., Easton, M., & Brandt, M. (2016). Selective laser melting (SLM) of AlSi12Mg lattice structures. Materials & Design, 98, 344–357.

    Google Scholar 

  48. Li, S., Hassanin, H., Attallah, M. M., Adkins, N. J. E., & Essa, K. (2016). The development of TiNi-based negative Poisson’s ratio structure using selective laser melting. Acta Materialia, 105, 75–83. https://doi.org/10.1016/j.actamat.2015.12.017

    Article  Google Scholar 

  49. Sercombe, T. B., Xu, X., Challis, V. J., Green, R., Yue, S., Zhang, Z., & Lee, P. D. (2015). Failure modes in high strength and stiffness to weight scaffolds produced by selective laser melting. Materials and Design, 67, 501–508. https://doi.org/10.1016/j.matdes.2014.10.063

    Article  Google Scholar 

  50. Alghamdi, A., Maconachie, T., Downing, D., Brandt, M., Qian, M., & Leary, M. (2020). Effect of additive manufactured lattice defects on mechanical properties: An automated method for the enhancement of lattice geometry. International Journal of Advanced Manufacturing Technology, 108, 957–971. https://doi.org/10.1007/s00170-020-05394-8

    Article  Google Scholar 

  51. Wauthle, R., Vrancken, B., Beynaerts, B., Jorissen, K., Schrooten, J., Kruth, J.-P., & Van Humbeeck, J. (2015). Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Additive Manufacturing, 5, 77–84.

    Google Scholar 

  52. du Plessis, A., Yadroitsava, I., & Yadroitsev, I. (2018). Ti6Al4V lightweight lattice structures manufactured by laser powder bed fusion for load-bearing applications. Optics and Laser Technology, 108, 521–528. https://doi.org/10.1016/j.optlastec.2018.07.050

    Article  Google Scholar 

  53. Al-Ketan, O., Rowshan, R., & Abu Al-Rub, R. K. (2018). Topologymechanical property relationship of 3D printed strut, skeletal and sheet based periodic metallic cellular materials. Additive Manufacturing, 19, 167–183. https://doi.org/10.1016/j.addma.2017.12.006

    Article  Google Scholar 

  54. Dong, Z., Liu, Y., Li, W., & Liang, J. (2019). Orientation dependency for microstructure, geometric accuracy and mechanical properties of selective laser melting AlSi10Mg lattices. Journal of Alloys and Compounds, 791, 490–500. https://doi.org/10.1016/j.jallcom.2019.03.344

    Article  Google Scholar 

  55. Mazur, M., Leary, M., Sun, S., Vcelka, M., Shidid, D., & Brandt, M. (2016). Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM). International Journal of Advanced Manufacturing Technology, 84, 1391–1411. https://doi.org/10.1007/s00170-015-7655-4

    Article  Google Scholar 

  56. Kessler, J., Balc, N., Gebhardt, A., & Abbas, K. (2017). Basic design rules of unit cells for additive manufactured lattice structures. MATEC Web of Conferences., 137, 02005. https://doi.org/10.1051/matecconf/201713702005

    Article  Google Scholar 

  57. Sing, S. L., Wiria, F. E., & Yeong, W. Y. (2018). Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior. Robotics and Computer-Integrated Manufacturing., 49, 170–180.

    Google Scholar 

  58. Karami, K., Blok, A., Weber, L., Ahmadi, S. M., Petrov, R., Nikolic, K., Borisov, E. V., Leeflang, S., Ayas, C., Zadpoor, A. A., Mehdipour, M., Reinton, E., & Popovich, V. A. (2020). Continuous and pulsed selective laser melting of Ti6Al4V lattice structures: Effect of post-processing on microstructural anisotropy and fatigue behaviour. Additive Manufacturing, 36, 101433.

    Google Scholar 

  59. Egan, D. S., & Dowling, D. P. (2019). Influence of process parameters on the correlation between in-situ process monitoring data and the mechanical properties of Ti-6Al-4V non-stochastic cellular structures. Additive Manufacturing, 30, 100890.

    Google Scholar 

  60. Großmann, A., Gosmann, J., & Mittelstedt, C. (2019). Lightweight lattice structures in selective laser melting: Design, fabrication and mechanical properties. Materials Science and Engineering: A, 766, 138356.

    Google Scholar 

  61. Kerckhofs, G., Pyka, G., Moesen, M., & Schrooten, J. (2012). High resolution micro-CT as a tool for 3D surface roughness measurement of 3D additive manufactured porous structures. ProC iCT, 77–83. https://doi.org/10.1002/adem.201200156

  62. Pyka, G., Kerckhofs, G., Papantoniou, I., Speirs, M., Schrooten, J., & Wevers, M. (2013). Surface roughness and morphology customization of additive manufactured open porous Ti6Al4V structures. Materials (Basel), 6, 4737–4757. https://doi.org/10.3390/ma6104737

    Article  Google Scholar 

  63. Chang, S., Liu, A., Ong, C. Y. A., Zhang, L., Huang, X., Tan, Y. H., Zhao, L., Li, L., & Ding, J. (2019). Highly effective smoothening of 3D-printed metal structures via over potential electrochemical polishing. Materials Research Letters, 7(7), 282–289. https://doi.org/10.1080/21663831.2019.1601645

    Article  Google Scholar 

  64. Hooreweder, B., & Kruth, J.-P. (2017). Advanced fatigue analysis of metal lattice structures produced by Selective Laser Melting. CIRP Annals - Manufacturing Technology., 66(1), 221–224. https://doi.org/10.1016/j.cirp.2017.04.130

    Article  Google Scholar 

  65. Leary, M., Mazur, M., Williams, H., Yang, E., Alghamdi, A., Lozanovski, B., Zhang, X., Shidid, D., Farahbod-Sternahl, L., Witt, G., Kelbassa, I., Choong, P., Qian, M., & Brandt, M. (2018). Inconel 625 lattice structures manufactured by selective laser melting (SLM): Mechanical properties, deformation and failure modes. Materials & Design, 157, 179–199. https://doi.org/10.1016/j.matdes.2018.06.010

    Article  Google Scholar 

  66. Isaenkova, M. G., Yudin, A. V., Rubanov, A. E., Osintsev, A. V., & Degadnikova, L. A. (2020). Deformation behavior modelling of lattice structures manufactured by a selective laser melting of 316L steel powder. Journal of Materials Research and Technology., 9(6), 15177–15184.

    Google Scholar 

  67. Yan, X., Lupoi, R., Wu, H., Ma, W., Liu, M., O’Donnell, G., & Yin, S. (2019). Effect of hot isostatic pressing (HIP) treatment on the compressive properties of Ti6Al4V lattice structure fabricated by selective laser melting. Materials Letters., 255, 126537.

    Google Scholar 

  68. Choy, S. Y., Sun, C.-N., Leong, K. F., & Wei, J. (2017). Compressive properties of functionally graded lattice structures manufactured by selective laser melting. Materials & Design, 131, 112–120.

    Google Scholar 

  69. Mahshid, R., Hansen, H. N., & Højbjerre, K. L. (2016). Strength analysis and modeling of cellular lattice structures manufactured using selective laser melting for tooling applications. Materials & Design, 104, 276–283.

    Google Scholar 

  70. Bari, K., & Arjunan, A. (2019). Extra low interstitial titanium based fully porous morphological bone scaffolds manufactured using selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials., 95, 1–12.

    Google Scholar 

  71. Ge, J., Yan, X., Lei, Y., Ahmed, M., O’Reilly, P., Zhang, C., Lupoi, R., & Yin, S. (2021). A detailed analysis on the microstructure and compressive properties of selective laser melted Ti6Al4V lattice structures. Materials & Design, 198, 109292.

    Google Scholar 

  72. Li, Z., Nie, Y., Liu, B., Kuai, Z., Zhao, M., & Liu, F. (2020). Mechanical properties of AlSi10Mg lattice structures fabricated by selective laser melting. Materials & Design, 192, 108709.

    Google Scholar 

  73. Zhong, T., He, K., Li, H., & Yang, L. (2019). Mechanical properties of lightweight 316L stainless steel lattice structures fabricated by selective laser melting. Materials & Design, 181, 108076.

    Google Scholar 

  74. Rosa, F., Manzoni, S., & Casati, R. (2018). Damping behavior of 316L lattice structures produced by Selective Laser Melting. Materials & Design, 160, 1010–1018.

    Google Scholar 

  75. Li, C., Lei, H., Liu, Y., Zhang, X., Xiong, J., Zhou, H., & Fang, D. (2018). Crushing behavior of multi-layer metal lattice panel fabricated by selective laser melting. International Journal of Mechanical Sciences., 145, 389–399.

    Google Scholar 

  76. Mahmoud, D., Al-Rubaie, K. S., & Elbestawi, M. A. (2021). The influence of selective laser melting defects on the fatigue properties of Ti6Al4V porosity graded gyroids for bone implants. International Journal of Mechanical Sciences., 193, 106180.

    Google Scholar 

  77. Refai, K., Brugger, C., Montemurro, M., & Saintier, N. (2020). An experimental and numerical study of the high cycle multiaxial fatigue strength of titanium lattice structures produced by Selective Laser Melting (SLM). International Journal of Fatigue., 138, 105623.

    Google Scholar 

  78. Wally, Z. J., Haque, A. M., Feteira, A., Claeyssens, F., Goodall, R., & Reilly, G. C. (2019). Selective laser melting processed Ti6Al4V lattices with graded porosities for dental applications. Journal of the Mechanical Behavior of Biomedical Materials., 90, 20–29.

    Google Scholar 

  79. Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., Qian, M., Brandt, M., & Xie, Y. M. (2016). Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 83, 127–141. https://doi.org/10.1016/j.biomaterials.2016.01.012

    Article  Google Scholar 

  80. Deering, J., & Grandfield, K. (2021). Current interpretations on the in vivo response of bone to additively manufactured metallic porous scaffolds: A review. Biomaterials and Biosystems., 2, 100013.

    Google Scholar 

  81. Rodgers, G. W., Van Houten, E. E. W., Bianco, R. J., Besset, R., & Woodfield, T. B. F. (2014). Topology optimization of porous lattice structures for orthopaedic implants. IFAC Proceedings, 47, 9907–9912.

    Google Scholar 

  82. Wang, C., Zhu, J., Wu, M., Hou, J., Zhou, H., Meng, L., Li, C., & Zhang, W. (2021). Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components. Chinese Journal of Aeronautics., 4(5), 386–398.

    Google Scholar 

  83. Brizuela, A., Herrero-Climent, M., Rios-Carrasco, E., Rios-Santos, J. V., Pérez, R. A., Manero, J. M., & Gil Mur, J. (2019). Influence of the elastic modulus on the osseointegration of dental implants. Materials (Basel), 12(6), 980. https://doi.org/10.3390/ma12060980

    Article  Google Scholar 

  84. Luo, J. P., Huang, Y. J., Xu, J. Y., Sun, J. F., Dargusch, M. S., Hou, C. H., Ren, L., Wang, R. Z., Ebel, T., & Yan, M. (2020). Additively manufactured biomedical Ti-Nb-Ta-Zr lattices with tunable Young’s modulus: Mechanical property, biocompatibility, and proteomics analysis. Materials Science and Engineering: C, 14, 110903.

    Google Scholar 

  85. Li, J., Cui, X., Hooper, G. J., Lim, K. S., & Woodfield, T. B. F. (2020). Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review. Journal of the Mechanical Behavior of Biomedical Materials, 105, 103671.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge that this literature survey was carried out in the scope of a project with a number of 120 N943 funded by the TUBITAK 2523 Program. One of the authors, Dr. Evren Yasa, would like to acknowledge that the SEM images given in Fig. 14.5 in this study are a result of research carried out under the TUBITAK ARDEB 1002 Program with a project number of 119 M781. She would also like to thank SLM Solutions GmbH for their assistance in the production of lattice structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozgur Poyraz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poyraz, O., Yasa, E., Depboylu, F.N., Korkusuz, F. (2022). Design, Analysis, and Production of Lattice Structures Through Powder Bed Fusion Additive Manufacturing. In: Kuşhan, M.C., Gürgen, S., Sofuoğlu, M.A. (eds) Materials, Structures and Manufacturing for Aircraft. Sustainable Aviation. Springer, Cham. https://doi.org/10.1007/978-3-030-91873-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91873-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91872-9

  • Online ISBN: 978-3-030-91873-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics