Skip to main content

Fatigue in Trapezoidal Leaf Springs of Suspensions in Two-Axle Wagons—An Overview and Simulation

  • Conference paper
  • First Online:
Structural Integrity and Fatigue Failure Analysis (VCMF 2020)

Abstract

The Portuguese railway sector has suffered a significant shortage of resources, generating many issues associated with the maintenance of the rolling stock affecting its operational ability. Many of these problems are caused by the fatigue phenomenon in leaf springs of freight wagons. Thus, the study of fatigue becomes an important role in the structural integrity of leaf springs as well as for whole rolling stock. Fatigue analysis with cyclic parameters estimated from monotonic characteristics is a good option for mechanical design. Also, nominal stress obtained from classical beam theory for straight beams may be applied for trapezoidal leaf springs, even for loads close to the yielding limit of the master leaf. Despite high mean and alternating stresses for the most severe loadings, trapezoidal leaf springs have shown a fatigue-life range coincident with the high-cycle fatigue regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knoema (2020) World—passengers carried by railways. https://knoema.com/atlas/World/topics/Transportation/Rail-transport/Passengerscarried-by-railways. Accessed 2 Nov 2020

  2. Knoema (2020) World—goods transported by railways. https://knoema.com/atlas/World/topics/Transportation/Rail-transport/Goodstransported-by-railways. Accessed 2 Nov 2020

  3. PorData (2020) Investimentos efectuados no transporte ferroviário: total, pelo estado e pelas empresas ferroviárias - continente. https://www.pordata.pt/Portugal/Investimentos+efectuados+no+transporte+ferroviário+total++pelo+Estado+e+pelas+empresas+ferroviário+++Continente-3113. Accessed 2 Nov 2020

  4. PorData (2020) Investimentos efectuados no transporte ferroviário: total, pelo estado e pelas empresas ferroviárias - continente. https://www.pordata.pt/Portugal/Investimentos+efectuados+no+transporte+ferroviário+total+e+por+área+++Continente-3114. Accessed 2 Nov 2020

  5. Knoema (2020) Portugal—passengers carried by railways. https://knoema.com/atlas/Portugal/topics/Transportation/Rail-transport/Passengerscarried-by-railways. Accessed 2 Nov 2020

  6. PorData (2020) Passageiros transportados no sistema ferroviário: total e por tipo de tráfego - continente. https://www.pordata.pt/Portugal/Passageiros+transportados+no+sistema+ferroviário+total+e+por+tipo+de+tráfego+++Continente-3116. Accessed 2 Nov 2020

  7. Knoema (2020) Portugal—goods transported by railways. https://knoema.com/atlas/Portugal/topics/Transportation/Rail-transport/Goodstransported-by-railways. Accessed 2 Nov 2020

  8. PorData (2020) Mercadorias transportadas por ferrovia: total, transporte doméstico e transporte internacional. https://www.pordata.pt/Europa/Mercadorias+transportadas+por+ferrovia+total++transporte+doméstico+e+transport+international-2721-315004. Accessed 2 Nov 2020

  9. PorData (2020) Veículos do transporte ferroviário - continente. https://www.pordata.pt/Portugal/Veículos+do+transporte+ferroviário+++Continente-3111. Accessed 2 Nov 2020

  10. Spiryagin M, Cole C, McClanachan SYQM, Spiryagin V, McSweeney T (2014) Design and simulation of rail vehicles. CRC Press, Taylor and Francis Group

    Google Scholar 

  11. I. U. of Railways (1995) Wagons—running gear—normalization.

    Google Scholar 

  12. I. U. of Railways (2007) Wagons—suspension gear—standardisation

    Google Scholar 

  13. Jönsson P (2004) Modelling and laboratory investigations on freight wagon link suspensions with respect to vehicle-track dynamic interaction European freight vehicle running gear: today’s position and future demands, technical report, SE-100 44 Stockholm

    Google Scholar 

  14. Iwnicki S, Spiryagin M, Cole C, McSweeney T (2020) Handbook of railway vehicle dynamics, 2nd edn. CRC Press, Taylor and Francis Group

    Google Scholar 

  15. Hecht M (2001) European freight vehicle running gear: today’s position and future demands. Proc Inst Mech Engrs Part F J Rail Rapid 215:1–11

    Google Scholar 

  16. Petrovi D, Gai BM, Savkovi M (2012) Increasing the efficiency of railway transport by improvement of suspension of freight wagons. Promet-Traff Transp 24(6):487–493. https://doi.org/10.7307/ptt.v24i6.1202

  17. Smith WF (1999) Principles of materials science and engineering

    Google Scholar 

  18. Yamada Y (2007) Materials for springs. Springer, Berlin. https://doi.org/10.1007/978-3-540-73812-1

  19. ISO 683–14 (2004) Heat-treatable steels, alloy steels and free-cutting steels- part 14: hot-rolled steels for quenched and tempered springs, 3rd edn. International Standard Organization

    Google Scholar 

  20. Husaini NA. Riantoni R, Putra TE, Husin H (2019) Study of leaf spring fracture behavior used in the suspension systems in the diesel truck vehicles. In: IOP Conf Ser Mater Sci Eng 541. https://doi.org/10.1088/1757-899X/541/1/012046

  21. Noronha B, Yesudasan S, Chacko S (2020) Static and dynamic analysis of automotive leaf spring: a comparative study of various materials using ANSYS. J Fail Anal Prev 20(3):804–818. https://doi.org/10.1007/s11668-020-00877y

    Article  Google Scholar 

  22. Ceyhanli UT, Bozca M (2020) Experimental and numerical analysis of the static strength and fatigue life reliability of parabolic leaf springs in heavy commercial trucks. Adv Mech Eng 12(7):804–818. https://doi.org/10.1177/1687814020941956

    Article  Google Scholar 

  23. Kumar K, Aggarwal ML (2013) Computer aided fea simulation of EN45A parabolic leaf spring. Int J Ind Eng Comput 4(2):297–304. https://doi.org/10.5267/j.ijiec.2013.01.005

    Article  Google Scholar 

  24. Fragoudakis R, Saigal A, Savaidis G, Malikoutsakis M, Bazios I, Savaidis A, Pappas G, Karditsas S (2013) Fatigue assessment and failure analysis of shot-peened leaf springs. Fatigue Fract Eng Mater Struct 36(2):92–101. https://doi.org/10.1111/j.1460-2695.2011.01661.x

    Article  Google Scholar 

  25. Atig A, Sghaier RB, Seddik R, Fathallah R (2017) Reliability-based high cycle fatigue design approach of parabolic leaf spring. Fatigue Fract Eng Mater Struct. https://doi.org/10.1177/1464420716680499

  26. Federal Department of the Environment, Transport, Energy and Communications DETEC, Federal Office for Transport BAV, Derailment in Daillens VD, report according to RID 1.8.5.4, 2016. Available at http://otif.org/en/

  27. Kumbhalkar MA, Bhope DV, Vanalkar AV, Chaoji PP (2018) Failure analysis of primary suspension spring of rail road vehicle. J Fail Anal Preven. https://doi.org/10.1007/s11668-018-0542-1

  28. Stephens RI, Fatemi A, Stephens RR, Fuchs HO (2001) Metal fatigue in engineering, 2nd edn

    Google Scholar 

  29. Hartman D (2013) Robust model for fatigue life estimation from monotonic properties data for steels, Master thesis, University of Waterloo, Waterloo, Ontario, Canada

    Google Scholar 

  30. Ong JH (1993) An improved technique for the prediction of axial fatigue life from tensile data. Int J Fatigue 15:213–219

    Article  CAS  Google Scholar 

  31. Muralidharan U, Manson SS (1988) A modified universal slopes equation for estimation of fatigue characteristics of metals. J Eng Mater Technol 110:55–58

    Article  Google Scholar 

  32. Roessle ML, Fatemi A (2000) Strain-controlled fatigue properties of steels and some simple approximations. Int J Fatigue 20:495–511

    Article  Google Scholar 

  33. Arora VL, Bhushan G, Aggarwal ML (2014) Fatigue life assessment of 65Si7 leaf springs: a comparative study. Int Sch Res Not 2014. Article ID 607272. https://doi.org/10.1155/2014/607272

  34. Hryciów Z, Krasoń W, Wysocki J (2018) The experimental tests on the friction coefficient between the leaves of the multi-leaf spring considering a condition of the friction surfaces. Maintenance Reliab 20(4). https://doi.org/10.17531/ein.2018.4.19

  35. Simo JC, Laursen T (1992) An augmented Lagrangian treatment of contact problems involving friction. Comput Struct 42:97–116. https://doi.org/10.1016/0045-7949(92)90540-G

    Article  Google Scholar 

  36. Hughes TJR (1984) Numerical Implementation of constitutive models: rate-independent deviatoric plasticity. In: Nemat-Nasser S, Asaro RJ, Hegemier GA (eds) Theoretical foundation for large-scale computations for nonlinear material behavior. Mechanics of elastic and inelastic solids 6, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6213-2_3

  37. Rankin CC, Brogan FA (1986) An element independent corotational procedure for the treatment of large rotations. ASME J Press Vessel Technol 108(2):165–174. https://doi.org/10.1115/1.3264765

  38. Argyris J (1982) An excursion into large rotations. Comput Methods Appl Mech Eng 32(1–3):85–155. https://doi.org/10.1016/0045-7825(82)90069-X

  39. Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prenticle-Hall, Inc., Englewood Cliffs

    Google Scholar 

  40. Gordon JL (1976) Outcur: an automated evaluation of two dimensional finite element stresses according to ASME. ASME, paper 76-WA/PVP-16

    Google Scholar 

  41. Schmid SR, Hamrock BJ, Jacobson BO (2013) Fundamentals of machine elements, 2nd edn. McGraw-Hill International Edition

    Google Scholar 

Download references

Acknowledgements

The authors thank to its industrial partner, MEDWAY (Maintenance and Repair). Also, the Doctoral Programme iRail- Innovation in Railway Systems and Technologies funding by the Portuguese Foundation for Science and Technology, IP (FCT) through the PhD grant (PD/BD/143141/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. G. Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gomes, V.M.G., Correia, J., Calçada, R., Barbosa, R.S., de Jesus, A.M.P. (2022). Fatigue in Trapezoidal Leaf Springs of Suspensions in Two-Axle Wagons—An Overview and Simulation. In: Lesiuk, G., Szata, M., Blazejewski, W., Jesus, A.M.d., Correia, J.A. (eds) Structural Integrity and Fatigue Failure Analysis. VCMF 2020. Structural Integrity, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-91847-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91847-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91846-0

  • Online ISBN: 978-3-030-91847-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics