Skip to main content

Lessons Learned from Introducing Aquaponics to Higher Education Curricula

  • Chapter
  • First Online:
Enhancing Environmental Education Through Nature-Based Solutions

Abstract

Aquaponics is an innovative and sustainable food production technology which has the potential to make a significant contribution to twenty-first century food systems, especially if there is an adequately trained workforce. In this chapter we review the efforts of an international consortium to develop a curriculum for teaching the basics of aquaponics to final year undergraduates and Masters students. As a nature-based solution which addresses a number of socio-environmental challenges, including food and water security, water pollution, human health, and climate change, aquaponics combines aquaculture and horticulture in an ecologically balanced closed-loop system. Teaching aquaponics promotes ecological literacy among students, thereby enabling future professionals of various careers whose activities are affected by—and have consequences for—environmental issues, and provides a pathway for introducing the concepts of sustainable development and the circular economy to higher education curricula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graber A, Junge R (2009) Aquaponic systems: nutrient recycling from fish wastewater by vegetable production. Desalination 246:147–156. https://doi.org/10.1016/j.desal.2008.03.048

    Article  CAS  Google Scholar 

  2. Yep B, Zheng Y (2019) Aquaponic trends and challenges—a review. J Clean Prod 228:1586–1599. https://doi.org/10.1016/j.jclepro.2019.04.290

    Article  CAS  Google Scholar 

  3. Wongkiew S, Hu Z, Nhan HT, Khanal SK (2020) Aquaponics for resource recovery and organic food productions. In: Kataki R, Pandey A, Khanal SK, Pant D (eds) Current developments in biotechnology and bioengineering. Elsevier, Amsterdam pp 475–494. https://doi.org/10.1016/B978-0-444-64309-4.00020-9

  4. Weber CL, Matthews HS (2008) Food-miles and the relative climate impacts of food choices in the United States. Environ Sci Technol 42:3508–3515. https://doi.org/10.1021/es702969f

  5. Kozai T, Niu G (2016) Plant factory as a resource-efficient closed plant production system. In: Kozai T, Niu G, Takagaki M (eds) Plant factory: an indoor vertical farming system for efficient quality food production. Academic Press, San Diego, CA, pp 69–90

    Chapter  Google Scholar 

  6. Milliken S, Ovca A, Antenen N, Villarroel M, Griessler Bulc T, Kotzen B, Junge R (2021) Aqu@teach—the first aquaponics curriculum to be developed specifically for higher education students. Horticulturae 7:18. horticulturae7020018

    Google Scholar 

  7. Junge R, Antenen N, Villarroel M, Griessler Bulc T, Ovca A, Milliken S (eds) (2020) Aquaponics: textbook for higher education. https://doi.org/10.5281/zenodo.3948179

  8. Milliken S, Griessler Bulc T, Junge R (eds) (2020) Entrepreneurial skills for aquaponics. Zenodo. https://doi.org/10.5281/zenodo.3948792

  9. Naegel LCA (1977) Combined production of fish and plants in recirculating water. Aquaculture 10(1):17–24. https://doi.org/10.1016/0044-8486(77)90029-1

    Article  Google Scholar 

  10. Rakocy JE, Shultz RC, Bailey DS, Thoman ES (2004) Aquaponic production of tilapia and basil: comparing a batch and staggered cropping system. Acta Horticult 648:63–69. https://www.actahort.org/books/648/648_8.htm

  11. Somerville C, Cohen M, Pantanella E, Stankus A, Lovatelli A (2015). Small-scale aquaponic food production: integrated fish and plant farming. Rome, FAO. fao.org/3/i4021e/i4021.pdf

    Google Scholar 

  12. Baganz G, Junge R, Portella MC, Goddek S, Keesman K, Baganz D, Staaks G, Shaw C, Lohrberg F (2021) Kloas W (2021) The aquaponics principle—it is all about coupling. Rev Aquac 00:1–13. https://doi.org/10.1111/raq.12596

    Article  Google Scholar 

  13. Goddek S, Joyce A, Kotzen B, Dos-Santos M (2019) Aquaponics and global food challenges. In: Goddek S, Joyce A, Kotzen B, Burnell GM (eds) Aquaponics food production systems. Springer, Cham pp 3–17. https://doi.org/10.1007/978-3-030-15943-6_1

  14. Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science 347(80):736. https://doi.org/10.1126/science.1259855

    Article  CAS  Google Scholar 

  15. Leinweber P, Bathmann U, Buczko U, Douhaire C, Eichler-Löbermann B, Frossard E, Eckhardt F, Jarvie H, Krämer I, Kabbe C (2018) Handling the phosphorus paradox in agriculture and natural ecosystems: scarcity, necessity, and burden of P. Ambio 47:3–19. https://doi.org/10.1007/s13280-017-0968-9

    Article  PubMed  Google Scholar 

  16. Dalsgaard J, Lund I, Thorarinsdottir R, Drengstig A, Arvonen K, Pedersen PB (2013) Farming different species in RAS in Nordic countries: current status and future perspectives. Aquacult Eng 53:2–13. https://doi.org/10.1016/j.aquaeng.2012.11.008

    Article  Google Scholar 

  17. Griggs D, Stafford-Smith M, Gaffney O, Rockström J, Ohman MC, Shyamsundar P, Steffen W, Glaser G, Kanie N, Noble I (2013) Policy: sustainable development goals for people and planet. Nature 495:305–307. https://doi.org/10.1038/495305a

    Article  CAS  PubMed  Google Scholar 

  18. Fader M, Cranmer C, Lawford R, Engel-Cox J (2018) Toward an understanding of synergies and trade-offs between water, energy, and food SDG targets. Front Environ Sci 6:112. https://doi.org/10.3389/fenvs.2018.00112

    Article  Google Scholar 

  19. Kloas W, Groß R, Baganz D, Graupner J, Monsees H, Schmidt U, Staaks G, Suhl J, Tschirner M, Wittstock B, Wuertz S, Zikova A, Rennert B (2015) A new concept for aquaponics systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquac Environ Interact 7:179–192. https://doi.org/10.3354/aei00146

    Article  Google Scholar 

  20. Yogev U, Barnes A, Gross A (2016) Nutrients and energy balance analysis for a conceptual model of a three loops off-grid aquaponics. Water 8(12):589. https://doi.org/10.3390/w8120589

    Article  CAS  Google Scholar 

  21. Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Evol Ecol 28(4):230–238. https://doi.org/10.1016/j.tree.2012.10.012

    Article  Google Scholar 

  22. Gott J, Morgenstern R, Turnšek M (2019) Aquaponics for the anthropocene: towards a ‘sustainability first’ agenda. In: Goddek S, Joyce A, Kotzen B, Burnell GM (eds) Aquaponics food production systems. Springer, Cham pp 393–432. https://doi.org/10.1007/978-3-030-15943-6_16

  23. Bice MB, Ball JW, Hollman A, Meyer D, Ringenberg J (2020) A qualitative assessment of considerations on how teachers can use classroom growing systems as a teaching model in middle school classrooms. Health Educ 52(1):4–14. files.eric.ed.gov/fulltext/EJ1268477.pdf

    Google Scholar 

  24. Clayborn J, Medina M, O’Brien G (2017) School gardening with a twist: encouraging educators to adopt aquaponics in the classroom. Appl Environ Educ Commun 16(2):93–104. https://doi.org/10.1080/1533015X.2017.1304837

    Article  Google Scholar 

  25. Emberger G (1991) A simplified integrated fish culture hydroponics system. Am Biol Teach 53(4):233–235. https://doi.org/10.2307/4449275

    Article  Google Scholar 

  26. Genello L, Fry JP, Frederick JA, Li X, Love DC (2015) Fish in the classroom: a survey of the use of aquaponics in education. Eur J Health Biol Educ 4(2):9–20. https://doi.org/10.20897/lectito.201502

  27. Hart ER, Webb JB, Danylchuk AJ (2013) Implementation of aquaponics in education: an assessment of challenges and solutions. Sci Educ Int 24(4):460–480. https://files.eric.ed.gov/fulltext/EJ1022306.pdf

  28. Hart ER, Webb JB, Hollingsworth C, Danylchuk AJ (2014) Managing expectations for aquaponics in the classroom: enhancing academic learning and teaching an appreciation for aquatic resources. Fisheries 39(11):525–530. https://doi.org/10.1080/03632415.2014.988555

    Article  Google Scholar 

  29. Hopkins MB, McKinney HT, Saam S, Ball GE, Murr L, Smith A, Tolliver B (2019) Aquaponics project-based learning at the secondary school level: cross-curricular learning in biology, chemistry, and mathematics. In: Tai C-C, Moran RMR, Robertson L, Keith K, Hong H (eds) Handbook of research on science literary integration in classroom environments. IGI Global, Hershey, Pennsylvania pp 276–287. https://doi.org/10.4018/978-1-5225-6364-8.ch017

  30. Nelson RL (2007) 10 great examples of aquaponics in education. Aquaponics J 46(3):18–21. https://aquaponics.com/wp-content/uploads/articles/Ten-Great-Examples-of-Aquaponics-in-Education.pdf

  31. Nicol E (1990) Hydroponics and aquaculture in the high school classroom. Am Biol Teach 52(3):182–184. https://doi.org/10.2307/4449074

    Article  Google Scholar 

  32. Park PJ, Huster ME, Mata C (2016) Laboratory aquaponics: bringing fish farming, gardening, and miniature biospheres into the everyday classroom. Test Stud Lab Teach 37:16. ableweb.org/biologylabs/wp-content/uploads/volumes/vol-37/16_Park.pdf

    Google Scholar 

  33. Schneller AJ, Schofield CA, Frank J, Hollister E, Mamuszka L (2015) A case study of indoor garden-based learning with hydroponics and aquaponics: evaluating the pro-environmental knowledge, perception, and behaviour change. Appl Environ Educ Commun 14(4):256–265. https://doi.org/10.1080/1533015X.2015.1109487

    Article  Google Scholar 

  34. Sivia A, MacMath S, Novakowski C, Britton V (2019) Examining student engagement during a project-based unit in secondary science. Can J Sci Math Technol Educ 19:254–269. https://doi.org/10.1007/s42330-019-00053-x

    Article  Google Scholar 

  35. Wardlow GW, Johnson DM, Mueller CL, Hilenberg CE (2002) Enhancing student interest in the agricultural sciences through aquaponics. J Nat Resou Life Sci Educ 31:55–58. https://www.agronomy.org/files/jnrlse/issues/2002/e00-15k.pdf

  36. Junge R, Wilhelm S, Hofstetter U (2014) Aquaponic in classrooms as a tool to promote systems thinking. In: Maček Jerala M, Maček MA (eds) Conference VIVUS: transmission of innovations, knowledge and practical experience into everyday practice. Biotehniški center Naklo, Strahinj, pp 234–244. https://www.researchgate.net/publication/273384078_Aquaponic_in_classrooms_as_a_tool_to_promote_system_thinking

  37. Junge R, Griessler Bulc T, Anseeuw D, Yavuzcan Yildiz H, Milliken S (2019) Aquaponics as an educational tool. In: Goddek S, Joyce A, Kotzen B, Burnell GM (eds) Aquaponics food production systems. Springer, Cham pp 561–595. https://doi.org/10.1007/978-3-030-15943-6_22

  38. Cheng S-C, Hwang G-J, Chen C-H (2019) From reflexive observation to active learning: a mobile experiential learning approach for environmental science education. Br J Educ Technol 50(5): 2251–2270. https://doi.org/10.111/bjet.12854

    Google Scholar 

  39. Pramesthi HR (2017) Enhancing students’ ecoliteracy in utilization of school area through aquaponics project as learning model in social studies learning (classroom action research in class VII-B Pasundan 2 Bandung). Int J Pedag Soc Stud 2(2):19–24. https://doi.org/10.17509/ijposs.v2i2.10159

  40. Leal Filho W, Shiel C, Paço A, Misfud M, Ávila LV, Brandli LL, Molthan-Hill P, Pace P, Azeiteiro UM, Ruiz Vargas V, Caeiro S (2019) Sustainable Development Goals and sustainability teaching at universities: falling behind or getting ahead of the pack? J Clean Prod 232(20):285–294. https://doi.org/10.1016/j.clepro.2019.05.309

    Article  Google Scholar 

  41. Annan-Diab F, Molinari C (2017) Interdisciplinarity: practical approach to advancing education for sustainability and for the sustainable development goals. Int J Manag Educ 15(2):73–83. https://doi.org/10.1016/j.ijme.2017.03.006

    Article  Google Scholar 

  42. Geissdoerfer M, Savaget P, Bocken NMP, Hultink EJ (2017) The circular economy—a new sustainability paradigm? J Clean Prod 143:757–768. https://doi.org/10.1016/j.jclepro.2016.12.048

    Article  Google Scholar 

  43. European Commission (2015) Closing the loop—an EU action plan for the circular economy. Com(2015) 614. Communication from the Commission of the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. European Commission, Brussels. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52015DC0614

  44. Leube M, Walcher D (2017) Designing for the next (circular) economy: an appeal to renew the curricula of design schools. Des J 20(sup1):S492–S501. https://doi.org/10.1080/14606925.2017.1352999

    Article  Google Scholar 

  45. Kılkış Ş, Kılkış B (2017) Integrated circular economy and education model to address aspects of an energy-water-food nexus in a dairy facility and local contexts. J Clean Prod 167:1084–1098. https://doi.org/10.1016/j.jclepro.2017.03.178

    Article  Google Scholar 

  46. Kopnina H (2018) Circular economy and cradle to cradle in educational practice. J Integr Environ Sci 15:123–138. https://doi.org/10.1080/1943815X.2018.1471724

    Article  Google Scholar 

  47. Kirchherr J, Piscicelli L (2019) Towards an education for the circular economy (ECE): five teaching principles and a case study. Resour Conserv Recycl 150:104406. https://doi.org/10.1016/j.resconrec.2019.104406

  48. Dale G, Dotro G, Srivastava P, Austin D, Hutchinson S, Head P, Goonetilleke A, Stefanakis A, Junge R, Fernández JA, Weyer V, Truter W, Bühler D, Bennett J, Liu H, Li Z, Du J, Schneider P, Hack J, Schönborn A (2021) Education in ecological engineering—a need whose time has come. Circ Econ Sustain 1:333–373. https://doi.org/10.1007/s43615-021-00067-4

    Article  Google Scholar 

  49. Weissbrodt DG, Winkler MKH, Wells GF (2020) Responsible science, engineering and education for water resource recovery and circularity. Environ Sci Water Res Technol 6:1952–1666. https://doi.org/10.1039/d0ew00402b

    Article  Google Scholar 

  50. Lewinsohn TM, Attayde JL, Fonseca CR, Ganade G, Jorge LR, Kollmann J, Overbeck GE, Prado PI, Pillar VD, Popp D, da Rocha PL, Silva WR, Spiekermann A, Weisser WW (2015) Ecological literacy and beyond: problem-based learning for future professionals. Ambio 44(2):154–162. https://doi.org/10.1007/s13280-014-0539-2

    Article  PubMed  Google Scholar 

  51. ENQA (2015) Standards and guidelines for quality assurance in the European higher education area (ESG). European Association for Quality Assurance in Higher Education, Brussels, Belgium. https://www.ehea.info/media.ehea.info/file/ESG/00/2/ESG_2015_616002.pdf

  52. Huertas E, Biscan I, Ejsing C, Kerber L, Kozlowska L, Marcos Ortega S, Lauri L, Risse M, Schörg K, Seppmann G (2018) Considerations for quality assurance of E-learning provision. European Association for Quality Assurance in Higher Education, Brussels, Belgium. https://www.enqa.eu/wp-content/uploads/Considerations-for-QA-of-e-learning-provision.pdf

  53. Jones BD, Epler CM, Mokri P, Bryant LH, Paretti MC (2013) The effects of collaborative problem-based learning on students’ motivation in engineering capstone courses. Interdiscip J Prob-Based Learn 72(2). https://doi.org/10.7771/1541-5015-1344

  54. Laurillard D (2002) Rethinking university teaching: a conversational framework for the effective use of learning technologies. Routledge, London

    Book  Google Scholar 

  55. Smith Nash S (2018) Moodle course design best practice, 2nd edn. Packt Publishing Ltd., Birmingham, UK

    Google Scholar 

  56. Farwell TM, Waters RD (2010) Exploring the use of social bookmarking technology in education: an analysis of students’ experiences using a course-specific Delicious.com account. MERLOT J Online Learn Teach 6(2):398–408. https://jolt.merlot.org/vol6no2/waters_0610.pdf

  57. Novak E, Razzouk R, Johnson TE (2012) The educational use of social annotation tools in higher education: a literature review. Internet High Educ 15:39–49. https://doi.org/10.1016/j.iheduc.2011.09.002

    Article  Google Scholar 

  58. Taha N, Wood J, Cox A (2014) Social bookmarking pedagogies in higher education: a comparative study. Int J Inf Syst Serv Sect 6(1):24–36. https://doi.org/10.4018/ijisss.2014010102

    Article  Google Scholar 

  59. Dennen VP, Cates ML, Bagdy LM (2017) Using Diigo to engage learners in course readings: learning design and formative evaluation. Int J Educ Media Technol 11(2): 3–15. https://jaems.jp/contents/icomej/vol11-2/1_1_Dennen.pdf

  60. Sun Y, Gao F (2017) Comparing the use of a social annotation tool and a threaded discussion forum to support online discussions. Internet High Educ 32:72–79. https://doi.org/10.1016/j.iheduc.2016.10.001

    Article  Google Scholar 

  61. Griessler Bulc T, Ovca A, Istenič D (eds) (2020) Teaching aquaponics: best practice guide. aquateach.files.wordpress.com/2020/07/aquateach_o8_best-practice-guide_en.pdf

    Google Scholar 

  62. Milliken S (ed) (2020) Toolbox of innovative didactic practices for higher education. aquateach.files.wordpress.com/2020/07/aquateach_o1_toolbox_en.pdf

    Google Scholar 

  63. Donnelly R (2010) Harmonizing technology with interaction in problem-based learning. Comput Educ 54(2):350–359. https://doi.org/10.1016/j.compedu.2009.08.012

    Article  Google Scholar 

  64. Kirkwood A, Price L (2014) Technology-enhanced learning and teaching in higher education. What is ‘enhanced’ and how do we know? A critical literature review. Learn Media Technol 39:6–36. https://doi.org/10.1080/17439884.2013.770404

    Article  Google Scholar 

  65. Flavin M (2012) Disruptive technologies in higher education. Res Learn Technol 20:102–111. https://doi.org/10.3402/rlt.v20i0.19184

    Article  Google Scholar 

  66. Salmon G, Ross B, Pechenkina E, Chase AM (2015) The space for social media in structured online learning. Res Learn Technol 23:1–14. https://doi.org/10.3402/rlt.v23.28507

    Article  Google Scholar 

  67. Henderson M, Selwyn N, Aston R (2015) What works and why? Student perceptions of ‘useful’ digital technology in university learning and teaching. Stud High Educ 42:1567–1579. https://doi.org/10.1080/03075079.2015.1007946

    Article  Google Scholar 

  68. Lawrence K (2015) Today’s college students: skimmers, scanners and efficiency seekers. Inf Serv Use 35:89–93. https://doi.org/10.3233/ISU-150765

    Article  Google Scholar 

  69. Cabero-Almenara J, Arancibia ML, del Prete A (2019) Technical and didactic knowledge of the Moodle LMS in higher education beyond functional use. J New Approaches Educ Res 8:25–33. https://doi.org/10.7821/naer.2019.1.327

    Article  Google Scholar 

  70. Hemmi A, Bayne S, Land R (2009) The appropriation and repurposing of social technologies in higher education. J Comput Assist Learn 25:19–30. https://doi.org/10.1111/j.1365-2729.2008.00306.x

    Article  Google Scholar 

  71. Hockings C (2010) Inclusive learning and teaching in higher education: a synthesis of research. Advance HE, York. https://www.advance-he.ac.uk/knowledge-hub/inclusive-learning-and-teaching-higher-education-synthesis-research

  72. Karzunina D, West J, Maschião da Costa G, Philippou G, Gordon S (2018) The global skills gap in the 21st century. QS Intelligence Unit, London. https://info.qs.com/rs/335-VIN-535/%20images/The%20Global%20Skills%20Gap%2021st%20Century.pdf

  73. Kolb DA (1984) Experiential learning: experience as the source of learning and development. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  74. Blank S (2013) Why the lean start-up changes everything. Harvard Business Review 9:63–72. https://hbr.org/2013/05/why-the-lean-start-up-changes-everything

Download references

Acknowledgements

Aqu@teach was co-funded by the Erasmus+ Programme of the European Union (Erasmus+ Strategic Partnership for Higher Education 2017-1-UK01-KA203-036663). The authors acknowledge the financial support of the Zurich University of Applied Sciences, and thank Zala Schmautz, Linda Tschirren and Fridolin Tschudi (Zurich University of Applied Sciences) and Darja Istenič and Franja Prosenc (University of Ljubljana) for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Milliken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milliken, S. et al. (2022). Lessons Learned from Introducing Aquaponics to Higher Education Curricula. In: Vasconcelos, C., Calheiros, C.S.C. (eds) Enhancing Environmental Education Through Nature-Based Solutions. Integrated Science, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-030-91843-9_11

Download citation

Publish with us

Policies and ethics