Skip to main content

What is Latin America Doing Regarding the Research and Teaching of Nature-Based Solutions (NbS) to Boost Environmental Education?

  • Chapter
  • First Online:
Enhancing Environmental Education Through Nature-Based Solutions

Part of the book series: Integrated Science ((IS,volume 4))

  • 640 Accesses

Abstract

Nature-based solutions (NbS) emerge with the aim of facing the several different challenges imposed by climate change and the extreme conditions that humanity is facing. The main purpose of this study is to evaluate NbS related research and teaching in order to prompt environmental education in Latin America. As a means to obtain information about the types of courses and undergraduate research and/or postgraduate training that has being done, investigation groups from Argentina, Brazil, Chile, Mexico and Peru were reached with the help of the Pan-American Constructed Wetlands Network (HUPANAM). This information was complemented with a Web of Science (WoS) review of Nbs publications in Latin America in 2010–2020. Within the study period 2010–2020, a total of 706 studies related to NbS were found in Latin America, being the groups in Brazil (319), Mexico (151), and Chile (83) the ones that led in the number of published research. Additionally, during the study period, an increase of 65% from 2010 to 2020 of publications in WoS could be observed due to the studies conducted by different researchers from Latin America. The most studied topics regarding NbS are constructed wetlands (CW) (38%), biofilters (23%), and stabilization ponds (16%). In terms of the promotion of environmental education related to NbS, a series of books, book chapters and courses can be found. For instance, the book “Constructed Wetlands: Design and Operation”, the book chapter “Strategies of the constructed wetlands operation under the perspective of the global change scenario” and undergraduate courses and summer schools related to CW can be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antuna-Rozado C, Herzog CP, Freitas T, Cagnin C, Wiedman G (2019) Nature Based Solutions (NBS) for sustainable and resilient cities: experiences from Europe and Brazil. IOP Conf Ser Earth Environ Sci 297. https://doi.org/10.1088/1755-1315/297/1/012001

  2. Kabisch N, Frantzeskaki N, Pauleit S, Naumann S, Davis M, Artmann M, Haase D, Knapp S, Korn H, Stadler J, Zaunberger K, Bonn A (2016) Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol Soc 21.https://doi.org/10.5751/ES-08373-210239

  3. Frantzeskaki N (2019) Seven lessons for planning nature-based solutions in cities. Environ Sci Policy 93:101–111. https://doi.org/10.1016/j.envsci.2018.12.033

    Article  Google Scholar 

  4. European Commission (2015) Towards an EU research and innovation policy agenda for Nature-Based Solutions & Re-Naturing Cities: Final report of the Horizon 2020 expert group on “Nature-based solutions and re-naturing cities”. Publications Office of the European Union, Brussels.

    Google Scholar 

  5. Albert C, Schröter B, Haase D, Brillinger M, Henze J, Herrmann S, Gottwald S, Guerrero P, Nicolas C, Matzdorf B (2019) Addressing societal challenges through nature-based solutions: how can landscape planning and governance research contribute? Landsc Urban Plan 182:12–21. https://doi.org/10.1016/j.landurbplan.2018.10.003

    Article  Google Scholar 

  6. Maes J, Jacobs S (2017) Nature-based solutions for Europe’s sustainable development. Conserv Lett 10:121–124. https://doi.org/10.1111/conl.12216

    Article  Google Scholar 

  7. Lafortezza R, Chen J, van den Bosch CK, Randrup TB (2018) Nature-based solutions for resilient landscapes and cities. Environ Res 165:431–441. https://doi.org/10.1016/j.envres.2017.11.038

    Article  CAS  PubMed  Google Scholar 

  8. Chausson A, Turner B, Seddon D, Chabaneix N, Girardin CAJ, Kapos V, Key I, Roe D, Smith A, Woroniecki S, Seddon N (2020) Mapping the effectiveness of nature-based solutions for climate change adaptation. Glob Chang Biol 26:6134–6155. https://doi.org/10.1111/gcb.15310

    Article  PubMed  Google Scholar 

  9. Faivre N, Fritz M, Freitas T, de Boissezon B, Vandewoestijne S (2017) Nature-Based Solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environ Res 159:509–518. https://doi.org/10.1016/j.envres.2017.08.032

    Article  CAS  PubMed  Google Scholar 

  10. Sukma E, Ramadhan S, Indriyani V (2020) Integration of environmental education in elementary schools. J Phys Conf Ser 148.https://doi.org/10.1088/1742-6596/1481/1/012136

  11. Briggs L, Trautmann NM, Fournier C (2018) Environmental education in Latin American and the Caribbean: the challenges and limitations of conducting a systematic review of evaluation and research. Environ Educ Res 24:1631–1654. https://doi.org/10.1080/13504622.2018.1499015

    Article  Google Scholar 

  12. González-Gaudiano E (2007) Schooling and environment in Latin America in the third millennium. Environ Educ Res 13:155–169. https://doi.org/10.1080/13504620701295684

    Article  Google Scholar 

  13. Ardoin NM, Bowers AW, Gaillard E (2020) Environmental education outcomes for conservation: a systematic review. Biol Conserv 241:108224. https://doi.org/10.1016/j.biocon.2019.108224

    Article  Google Scholar 

  14. Toomey AH, Knight AT, Barlow J (2017) Navigating the Space between Research and Implementation in Conservation. Conserv Lett 10:619–625. https://doi.org/10.1111/conl.12315

    Article  Google Scholar 

  15. Van den Bosch M, Ode Sang A (2017) Urban natural environments as nature-based solutions for improved public health—a systematic review of reviews. Environ Res 158:373–384. https://doi.org/10.1016/j.envres.2017.05.040

    Article  CAS  PubMed  Google Scholar 

  16. Vicente Reyes J (2016) Determinación de la eficiencia del aserrín y la fibra de coco utilizados como empaques para la remoción de contaminantes en Biofiltros para el tratamiento de aguas residuales. Enfoque UTE 7:41–56. https://doi.org/10.29019/enfoqueute.v7n3.104

  17. Tejedor J, Cóndor V, Almeida-Naranjo CE, Guerrero VH, Villamar CA (2020) Performance of wood chips/peanut shells biofilters used to remove organic matter from domestic wastewater. Sci Total Environ 738:139589. https://doi.org/10.1016/j.scitotenv.2020.139589

    Article  CAS  PubMed  Google Scholar 

  18. García-Sánchez L, Gutiérrez-Macías T, Estrada-Arriaga EB (2019) Assessment of a Ficus benjamina wood chip-based aerated biofilter used for the removal of metformin and ciprofloxacin during domestic wastewater treatment. J Chem Technol Biotechnol 94:1870–1879. https://doi.org/10.1002/jctb.5962

    Article  CAS  Google Scholar 

  19. Hille S, Andersen DK, Kronvang B, Baattrup-Pedersen A (2018) Structural and functional characteristics of buffer strip vegetation in an agricultural landscape—high potential for nutrient removal but low potential for plant biodiversity. Sci Total Environ 628–629:805–814. https://doi.org/10.1016/j.scitotenv.2018.02.117

    Article  CAS  PubMed  Google Scholar 

  20. Santin FM, da Silva RV, Grzybowski JMV (2016) Artificial neural network ensembles and the design of performance-oriented riparian buffer strips for the filtering of nitrogen in agricultural catchments. Ecol Eng 94:493–502. https://doi.org/10.1016/j.ecoleng.2016.06.008

    Article  Google Scholar 

  21. González T, Puigagut J, Vidal G (2021) Organic matter removal and nitrogen transformation by a constructed wetland-microbial fuel cell system with simultaneous bioelectricity generation. Sci Total Environ 753:142075. https://doi.org/10.1016/j.scitotenv.2020.142075

    Article  CAS  PubMed  Google Scholar 

  22. Vera I, García J, Sáez K, Moragas L, Vidal G (2011) Performance evaluation of eight years experience of constructed wetland systems in Catalonia as alternative treatment for small communities. Ecol Eng 37:364–371. https://doi.org/10.1016/j.ecoleng.2010.11.031

    Article  Google Scholar 

  23. López D, Fuenzalida D, Vera I, Rojas K, Vidal G (2015) Relationship between the removal of organic matter and the production of methane in subsurface flow constructed wetlands designed for wastewater treatment. Ecol Eng 83:296–304. https://doi.org/10.1016/j.ecoleng.2015.06.037

    Article  Google Scholar 

  24. Leiva AM, Reyes-Contreras C, Vidal G (2018) Influence of Agapanthus africanus on nitrification in a vertical subsurface flow constructed wetland. Int J Phytoremediation 20:530–537. https://doi.org/10.1080/15226514.2017.1393390

    Article  CAS  PubMed  Google Scholar 

  25. Vidal G, Hormazábal S (2018) Humedales Construidos. Editorial Universidad de Concepción, Concepción, Diseño y operación

    Google Scholar 

  26. Vera I, Jorquera C, López D, Vidal G (2016) Humedales construidos para el tratamiento y reúso de aguas servidas en Chile: reflexiones. Tecnol y Ciencias del Agua 7:19–35

    Google Scholar 

  27. Sandoval V, Suárez F (2019) A new method to determine how compaction affects water and heat transport in green roof substrates. Appl Sci 9:4697. https://doi.org/10.3390/app9214697

    Article  CAS  Google Scholar 

  28. Ávila-Hernández A, Simá E, Xamán J, Hernández-Pérez I, Téllez-Velázquez E, Chagolla-Aranda MA (2020) Test box experiment and simulations of a green-roof: Thermal and energy performance of a residential building standard for Mexico. Energy Build 209. https://doi.org/10.1016/j.enbuild.2019.109709

  29. Contreras-Bejarano O, Villegas-González PA (2019) Green roofs for comprehensive water management: case study in Chapinero, Colombia. Tecnol y Ciencias del Agua 10:282–318. https://doi.org/10.24850/j-tyca-2019-05-11

  30. Peñalvo-López E, Cárcel-Carrasco J, Alfonso-Solar D, Valencia-Salazar I, Hurtado-Pérez E (2020) Study of the improvement on energy efficiency for a building in the Mediterranean area by the installation of a green roof system. Energies 13:1246. https://doi.org/10.3390/en13051246

    Article  Google Scholar 

  31. Azkorra Z, Pérez G, Coma J, Cabeza LF, Bures S, Álvaro JE, Erkoreka A, Urrestarazu M (2015) Evaluation of green walls as a passive acoustic insulation system for buildings. Appl Acoust 89:46–56. https://doi.org/10.1016/j.apacoust.2014.09.010

    Article  Google Scholar 

  32. Manso M, Castro-Gomes J (2015) Green wall systems: a review of their characteristics. Renew Sust Energ Rev 41:863–871. https://doi.org/10.1016/j.rser.2014.07.203

    Article  Google Scholar 

  33. Monteiro M, Santos C, Mann RMM, Soares AMVMMVM, Lopes T (2007) Evaluation of cadmium genotoxicity in Lactuca sativa L. using nuclear microsatellites. Environ Exp Bot 60:421–427. https://doi.org/10.1016/j.envexpbot.2006.12.018

    Article  CAS  Google Scholar 

  34. Sendra-Arranz R, Oquendo V, Olivieri L, Olivieri F, Bedoya C, Gutiérrez A (2020) Monitorization and statistical analysis of south and west green walls in a retrofitted building in Madrid. Build Environ 183.https://doi.org/10.1016/j.buildenv.2020.107049

  35. Nagendra H, Gopal D (2010) Street trees in Bangalore: Density, diversity, composition and distribution. Urban For Urban Green 9:129–137. https://doi.org/10.1016/j.ufug.2009.12.005

    Article  Google Scholar 

  36. Mullaney J, Lucke T, Trueman SJ (2015) A review of benefits and challenges in growing street trees in paved urban environments. Landsc Urban Plan 134:157–166. https://doi.org/10.1016/j.landurbplan.2014.10.013

    Article  Google Scholar 

  37. Rhodes JR, Ng CF, de Villiers DL, Preece HJ, McAlpine CA, Possingham HP (2011) Using integrated population modelling to quantify the implications of multiple threatening processes for a rapidly declining population. Biol Conserv 144:1081–1088. https://doi.org/10.1016/j.biocon.2010.12.027

    Article  Google Scholar 

  38. Passos RG, Ferreira VVM, von Sperling M (2019) A dynamic and unified model of hydrodynamics in waste stabilization ponds. Chem Eng Res Des 144:434–443. https://doi.org/10.1016/j.cherd.2019.02.025

    Article  CAS  Google Scholar 

  39. Costa RHR, Martins CL, Fernandes H, Velho VF (2017) Biodegradation and detoxification of sanitary landfill leachate by stabilization ponds system. Water Environ Res 89:539–548. https://doi.org/10.2175/106143016x14798353399052

    Article  CAS  PubMed  Google Scholar 

  40. Cornejo PK, Zhang Q, Mihelcic JR (2013) Quantifying benefits of resource recovery from sanitation provision ina developing world setting. J Environ Manage 131:7–15. https://doi.org/10.1016/j.jenvman.2013.09.043

    Article  CAS  PubMed  Google Scholar 

  41. United Nations (2015) The Paris Agreement. United Nation Editorial, Paris

    Google Scholar 

  42. United Nations (2016) The New Urban Agenda. United Nation Editorial, Quito.

    Google Scholar 

  43. United Nations (2015) Sendai Framework for Disaster Risk Reduction 2015–2030. United Nations Editorial, Sendai.

    Google Scholar 

  44. United Nations (2016) UN Biodiversity Conference results in significant commitments for action on biodiversity. United Nations Editorial, Montreal

    Google Scholar 

  45. Convention on Biological Diversity (2016) Mainstreaming and the integration of biodiversity across relevant sectors, and further implications of the 2030 Agenda for sustainable development and of other relevant international processes for the future work of the convention. United Nations Editorial, Mexico.

    Google Scholar 

  46. United Nations (2016) Transforming our world: The 2030 Agenda for sustainable development. United Nations Editions, New York

    Google Scholar 

  47. Liquete C, Udias A, Conte G, Grizzetti B, Masi F (2016) Integrated valuation of a nature-based solution for water pollution control. Highlighting hidden benefits. Ecosyst Serv 22:392–401. https://doi.org/10.1016/j.ecoser.2016.09.011

    Article  Google Scholar 

  48. Todorov D, Driscoll CT, Todorova S (2018) Long-term and seasonal hydrologic performance of an extensive green roof. Hydrol Process 32:2471–2482. https://doi.org/10.1002/hyp.13175

    Article  Google Scholar 

  49. Li Y, Wang Y, Wan D, Li B, Zhang P, Wang H (2020) Pilot-scale application of sulfur-limestone autotrophic denitrification biofilter for municipal tailwater treatment: Performance and microbial community structure. Bioresour Technol 300.https://doi.org/10.1016/j.biortech.2019.122682

  50. Tortajada C, Biswas AK (2018) Achieving universal access to clean water and sanitation in an era of water scarcity: strengthening contributions from academia. Curr Opin Environ Sustain 34:21–25. https://doi.org/10.1016/j.cosust.2018.08.001

    Article  Google Scholar 

  51. Gupta J, Vegelin C (2016) Sustainable development goals and inclusive development. Int Environ Agreements Polit Law Econ 16:433–448. https://doi.org/10.1007/s10784-016-9323-z

    Article  Google Scholar 

  52. Halkos G, Gkampoura EC (2021) Where do we stand on the 17 Sustainable development goals? An overview on progress. Econ Anal Policy 70:94–122. https://doi.org/10.1016/j.eap.2021.02.001

    Article  Google Scholar 

  53. Di Luca GA, Maine MA, Sanchez GC (2020) Processes of transformation and removal of metals in constructed wetlands for the treatment of effluents from metallurgical plants. In: Gurjar BR, Govil JN (eds) Water pollution and waste water treament of the series "Environmental Science Engineering”. Studium Press, Cambridge, pp 3–30

    Google Scholar 

  54. Scaratti D, Sezerino PH, Bento A, Oliveira EN, Tonetta D, Moriggi T (2017) Adaptação de Parâmetros de Projetos para Lagoas de Estabilização Aplicáveis às Condições Climáticas da Bacia Hidrógrafica do Rio do Peixe. In: Coordenação de Comunicação Social (eds) 8° Caderno de pesquisa em Engenharia de Saúde Pública. Ministério da Saúde, Fundação Nacional de Saúde, Brasilia, pp 73–106

    Google Scholar 

  55. Vidal G, López D, María Leiva A, Gómez G, Arismendi W, Hormazábal S (2018) Strategies of the Constructed Wetlands Operation under the Perspective of the Global Change Scenario. In: Durán-Domínguez-de-Bazúa M, Navarro-Frómeta AE, Bayona JM (eds), Artificial or Constructed Wetlands. 2nd edn. Taylor & Francis Group, Boca de Raton, pp 367–386

    Google Scholar 

  56. Miglio R, Garcia-Rospigliosi A, Nencova EPR (2016) Water sensitive urban design for metropolitan Lima, Peru- "Wastewater treatment park: the childrens park”. In: Hettiarachchi H, Ardakanian R (eds) Safe Use of Wastewater in Agriculture: Good Practice Examples, United Nation Editorial, Dresden, pp 21–41

    Google Scholar 

  57. Vidal G, Hormazábal S (2016) Las fibras naturales y sus aplicaciones. Editorial Universidad de Concepción, Concepción, Innovación en su generación a partir de la depuración de agua

    Google Scholar 

  58. Pastor R, Arias C, Miglio R (2017) Humedales construidos para la depuración de aguas residuales. Fondo Editorial Universidad Nacional Agraria La Molina, Lima

    Google Scholar 

  59. Sezerino PH, Rousso BZ, Pelissari C, Dos Santos MO, Freitas M, Fechine VY, Beims AM (2018) Wetlands construídos aplicados no tratamento de esgoto sanitário: recomendações para implantação e boas práticas de operação e manutenção. Fundação Nacional de Saúde FUNASA / Copiart, Florianopolis.

    Google Scholar 

  60. De Los Reyes CP, Pozo G, Vidal G (2014) Nitrogen behavior in a free water surface constructed wetland used as posttreatment for anaerobically treated swine wastewater effluent. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng 49:218–227. https://doi.org/10.1080/10934529.2013.838925

    Article  CAS  Google Scholar 

  61. Rigotti JA, Pasqualini JP, Rodrigues LR (2020) Nature-based solutions for managing the urban surface runoff: An application of a constructed floating wetland. Limnetica 39:441–454. https://doi.org/10.23818/limn.39.28

  62. Aguilar L, Gallegos Á, Arias CA, Ferrera I, Sánchez O, Rubio R, Ben SM, Missagia B, Caro P, Sahuquillo S, Pérez C, Morató J (2019) Microbial nitrate removal efficiency in groundwater polluted from agricultural activities with hybrid cork treatment wetlands. Sci Total Environ 653:723–734. https://doi.org/10.1016/j.scitotenv.2018.10.426

    Article  CAS  PubMed  Google Scholar 

  63. Campos JM, Queiroz SCN, Roston DM (2019) Removal of the endocrine disruptors ethinyl estradiol, bisphenol A, and levonorgestrel by subsurface constructed wetlands. Sci Total Environ 693:133514.https://doi.org/10.1016/j.scitotenv.2019.07.320

  64. Castañer CM, Bellver-Domingo Á, Hernández-Sancho F (2020) environmental and economic approach to assess a horizontal sub-surface flow wetland in developing area. Water Resour Manag 34:3761–3778. https://doi.org/10.1007/s11269-020-02629-x

    Article  Google Scholar 

  65. Fia FRL, de Matos AT, Fia R, Borges AC, Baptestini GCF (2020) Phosphorus dynamics in constructed wetlands systems treating swine wastewater. Eng Sanit e Ambient 25:79–86. https://doi.org/10.1590/s1413-41522020124591

    Article  Google Scholar 

  66. López D, Sepúlveda-Mardones M, Ruiz-Tagle N, Sossa K, Uggetti E, Vidal G (2019) Potential methane production and molecular characterization of bacterial and archaeal communities in a horizontal subsurface flow constructed wetland under cold and warm seasons. Sci Total Environ 648:1042–1051. https://doi.org/10.1016/j.scitotenv.2018.08.186

    Article  CAS  PubMed  Google Scholar 

  67. Marcelino GR, de Carvalho KQ, de Lima MX, Passig FH, Belini AD, Bernardelli JKB, Nagalli A (2020) Construction waste as substrate in vertical subsuperficial constructed wetlands treating organic matter, ibuprofenhene, acetaminophen and ethinylestradiol from low-strength synthetic wastewater. Sci Total Environ 728.https://doi.org/10.1016/j.scitotenv.2020.138771

  68. de Ramos N, FS, Borges AC, Gonçalves GC, de Matos AT, (2017) Tratamento de águas residuárias de suinocultura em sistemas alagados construídos, com Chrysopogon zizanioides e Polygonum punctatum cultivadas em leito de argila expandida. Eng Sanit e Ambient 22:123–132. https://doi.org/10.1590/S1413-4152201687067

    Article  Google Scholar 

  69. Delgado N, Bermeo L, Hoyos DA, Peñuela GA, Capparelli A, Marino D, Navarro A, Casas-Zapata JC (2020) Occurrence and removal of pharmaceutical and personal care products using subsurface horizontal flow constructed wetlands. Water Res 187:116448.https://doi.org/10.1016/j.watres.2020.116448

  70. Lizama-Allende K, Jaque I, Ayala J, Montes-Atenas G, Leiva E (2018) Arsenic removal using horizontal subsurface flow constructed Wetlands: A sustainable alternative for arsenic-rich acidic waters. Water (Switzerland) 10.https://doi.org/10.3390/w10101447

  71. Chicaiza C, Huaraca L, Almeida-Naranjo CE, Guerrero VH, Villamar CA (2020) Improvement of organic matter and nutrient removal from domestic wastewater by using intermittent hydraulic rates on earthworm-microorganism biofilters. Water Sci Technol 82:281–291. https://doi.org/10.2166/wst.2020.139

    Article  CAS  PubMed  Google Scholar 

  72. Sánchez OI, Sanguino OW, Gómez CA, García CR (2014) Evaluation of a rainbow trout (Oncorhynchus mikyss) culture water recirculating system. Rev MVZ Cordoba 19:4226–4241. https://doi.org/10.21897/rmvz.85

  73. Campos-Vargas E, Calvo-Romero K, Montero-Campos V (2017) Degradación de bromacil mediante la cepa IT-01 de Penicillium spp. y su aplicación en un biofiltro a escala laboratorio. Rev Tecnol en Marcha 29:47. https://doi.org/10.18845/tm.v29i4.3036

  74. Osuna-Motta I, Herrera-Cáceres C, López-Bernal O (2017) Techo plantado como dispositivo de climatización pasiva en el trópico. Rev Arquit 19:50–64. https://doi.org/10.14718/revarq.2017.19.1.1109

  75. Da Rosa WV, Blanco CJC, Gonçalves ED (2020) Thermal and hydrological performance of extensive green roofs in Amazon climate, Brazil. Proc Inst Civ Eng Eng Sustain 173:125–134. https://doi.org/10.1680/jensu.18.00060

    Article  Google Scholar 

  76. Cerón-Palma I, Sanyé-Mengual E, Oliver-Solà J, Montero JI, Ponce-Caballero C, Rieradevall J (2013) Towards a green sustainable strategy for social neighbourhoods in Latin America: Case from social housing in Merida, Yucatan, Mexico. Habitat Int 38:47–56. https://doi.org/10.1016/j.habitatint.2012.09.008

    Article  Google Scholar 

  77. Arellano-Leyva E, Hernández-Quiróz M, Huerta-Guzmán RG, Collazo-Ortega M (2017) Extensive green roofs as a means to capture polycyclic aromatic hydrocarbons. Polycycl Aromat Compd 37:280–291. https://doi.org/10.1080/10406638.2015.1105827

    Article  CAS  Google Scholar 

  78. Rosatto H, Meyer M, Laureda D, Cazorla L, Barrera D, Gamboa P, Villalba G, Bargiela M, Pruzzo L, Plaza LR, Mazzeo N, Caso C, Rocca C, Patricia H, Kohan D, Quaintenne E (2013) Eficiencia en la retención del agua de lluvia de cubiertas vegetadas de tipo “extensivo” e “intensivo.” Rev la Fac Ciencias Agrar 45:169–183

    Google Scholar 

  79. Ferraz FM, Povinelli J, Pozzi E, Vieira EM, Trofino JC (2014) Co-treatment of landfill leachate and domestic wastewater using a submerged aerobic biofilter. J Environ Manage 141:9–15. https://doi.org/10.1016/j.jenvman.2014.03.022

    Article  CAS  PubMed  Google Scholar 

  80. Allievi MJ, Silveira DD, Cantão ME, Filho PB (2018) Bacterial community diversity in a full scale biofilter treating wastewater odor. Water Sci Technol 77:2014–2022. https://doi.org/10.2166/wst.2018.114

    Article  CAS  PubMed  Google Scholar 

  81. Andrés N, Machado L, Domínguez CG, Barreto W, Méndez N, López LJ, Gabriela M, Pugo S, Xavier R, Acevedo L, Viviana V, Machado M (2020) ROOFS 32:54–71

    Google Scholar 

  82. Valdés H, Correa C, Mellado F (2018) Proposed model of sustainable construction skills for engineers in Chile. Sustain 10.https://doi.org/10.3390/su10093093

  83. Vera-Puerto I, Valdes H, Correa C, Agredano R, Vidal G, Belmonte M, Olave J, Arias C (2020) Proposal of competencies for engineering education to develop water infrastructure based on “Nature-Based Solutions” in the urban context. J Clean Prod 265:121717.https://doi.org/10.1016/j.jclepro.2020.121717

  84. Yepes V, Pellicer E, Ortega AJ (2012) Designing a benchmark indicator for managerial competences in construction at the graduate level. J Prof Issues Eng Educ Pract 138:48–54. https://doi.org/10.1061/(ASCE)EI.1943-5541.0000075

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the following Grants: ANID/FONDAP/15130015. A.M. Leiva thanks to National for Research and Development (ANID) for her Scholarship Program National for Research and Development (ANID)/Scholarship Program/Doctorado Nacional/2019-21191116, for supporting her Ph.D. studies at the Universidad de Concepción. Also, authors thank to Dr. M. von Sperling from Federal University of Minas Gerais (Brasil), Dr. P. Sezerino from Universidade Federal de Santa Catarina (Brasil), Dr. A. Mine from Universidad Nacional del Litoral (Argentina), Dr. R. Miglio from Universidad Nacional Agraria La Molina (Peru), Dr. T. López Universidad Nacional de Asunción (Paraguay) and F. Zurita from Centro Universitario de la Ciénega (México) for the information provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gladys Vidal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Contreras, J., Leiva, A.M., González, Y., Vidal, G. (2022). What is Latin America Doing Regarding the Research and Teaching of Nature-Based Solutions (NbS) to Boost Environmental Education?. In: Vasconcelos, C., Calheiros, C.S.C. (eds) Enhancing Environmental Education Through Nature-Based Solutions. Integrated Science, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-030-91843-9_10

Download citation

Publish with us

Policies and ethics