Skip to main content

RNA-seq Fusion Detection in Clinical Oncology

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1361)

Abstract

Gene fusions play a prominent role in the oncogenesis of many cancers and have been extensively targeted as biomarkers for diagnostic, prognostic, and therapeutic purposes. Detection methods span a number of platforms, including cytogenetics (e.g., FISH), targeted qPCR, and sequencing-based assays. Before the advent of next-generation sequencing (NGS), fusion testing was primarily targeted to specific genome loci, with assays tailored for previously characterized fusion events. The availability of whole genome sequencing (WGS) and whole transcriptome sequencing (RNA-seq) allows for genome-wide screening for the simultaneous detection of both known and novel fusions. RNA-seq, in particular, offers the possibility of rapid turn-around testing with less dedicated sequencing than WGS. This makes it an attractive target for clinical oncology testing, particularly when transcriptome data can be multi-purposed for tumor classification and additional analyses. Despite considerable efforts and substantial progress, however, genome-wide screening for fusions solely based on RNA-seq data remains an ongoing challenge. A host of technical artifacts adversely impact the sensitivity and specificity of existing software tools. In this chapter, the general strategies employed by current fusion software are discussed, and a selection of available fusion detection tools are surveyed. Despite its current limitations, RNA-seq-based fusion detection offers a more comprehensive and efficient strategy as compared to multiple targeted fusion assays. When thoughtfully employed within a wider ecosystem of diagnostic assays and clinical information, RNA-seq fusion detection represents a powerful tool for precision oncology.

Keywords

  • Fusion
  • Screening
  • RNA-seq
  • Chimeric
  • Junction
  • Breakpoint
  • Soft clip
  • Internal tandem duplication (ITD)
  • Sequencing artifact
  • Discordant reads
  • Alignment
  • Mapping
  • Homology
  • Sensitivity
  • Specificity
  • Ensemble

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 2007;7:233–45.

    CrossRef  CAS  Google Scholar 

  2. Sun C, Chang L, Zhu X. Pathogenesis of ETV6/RUNX1-positive childhood acute lymphoblastic leukemia and mechanisms underlying its relapse. Oncotarget. 2017;8(21):35445–59. https://doi.org/10.18632/oncotarget.16367.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Zhou X, Edmonson MN, Wilkinson MR, Patel A, Wu G, Liu Y, Li Y, Zhang Z, Rusch MC, Parker M, Becksfort J, Downing JR, Zhang J. Exploring genomic alteration in pediatric cancer using ProteinPaint. Nat Genet. 2016;48(1):4–6. https://doi.org/10.1038/ng.3466. PMID: 26711108; PMCID: PMC4892362.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  4. Peiris MN, Li F, Donoghue DJ. BCR: a promiscuous fusion partner in hematopoietic disorders. Oncotarget. 2019;10(28):2738–54.

    CrossRef  Google Scholar 

  5. Tian L, Li Y, Edmonson MN, et al. CICERO: a versatile method for detecting complex and diverse driver fusions using cancer RNA sequencing data. Genome Biol. 2020;21:126.

    CrossRef  CAS  Google Scholar 

  6. Ma C, Shao M, Kingsford C. SQUID: transcriptomic structural variation detection from RNA-seq. Genome Biol. 2018;19:52. https://doi.org/10.1186/s13059-018-1421-5.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics. 2009;25(21):2865–71.

    CrossRef  CAS  Google Scholar 

  8. Akiva P, Toporik A, Edelheit S, Peretz Y, Diber A, Shemesh R, Novik A, Sorek R. Transcription-mediated gene fusion in the human genome. Genome Res. 2006;16(1):30–6. https://doi.org/10.1101/gr.4137606. Epub 2005 Dec 12. PMID: 16344562; PMCID: PMC1356126.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  9. Santer L, Bär C, Thum T. Circular RNAs: a novel class of functional RNA molecules with a therapeutic perspective. Mol Ther. 2019;27(8):1350–63.

    CrossRef  CAS  Google Scholar 

  10. Rusch M, Nakitandwe J, Shurtleff S, Newman S, Zhang Z, Edmonson MN, Parker M, Jiao Y, Ma X, Liu Y, Gu J, Walsh MF, Becksfort J, Thrasher A, Li Y, McMurry J, Hedlund E, Patel A, Easton J, Yergeau D, Vadodaria B, Tatevossian RG, Raimondi S, Hedges D, Chen X, Hagiwara K, McGee R, Robinson GW, Klco JM, Gruber TA, Ellison DW, Downing JR, Zhang J. Clinical cancer genomic profiling by three-platform sequencing of whole genome, whole exome and transcriptome. Nat Commun. 2018;9(1):3962.

    CrossRef  Google Scholar 

  11. Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011;12(10):671–82. https://doi.org/10.1038/nrg3068.

    CrossRef  CAS  PubMed  Google Scholar 

  12. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.

    CrossRef  CAS  Google Scholar 

  13. Haas BJ, Dobin A, Li B, et al. Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods. Genome Biol. 2019;20:213. https://doi.org/10.1186/s13059-019-1842-9.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  14. Uhrig S, Ellermann J, Walther T, Burkhardt P, Fröhlich M, Hutter B, Toprak UH, Neumann O, Stenzinger A, Scholl C, Fröhling S, Brors B. Accurate and efficient detection of gene fusions from RNA sequencing data. Genome Res. 2021;31(3):448–60. Jan 13:gr.257246.119

    CrossRef  Google Scholar 

  15. Haas BJ. STAR-Fusion code and documentation on GitHub 2019. Available from: https://github.com/STAR-Fusion/STAR-Fusion/wiki.

  16. 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65.

    CrossRef  Google Scholar 

  17. Schmidt BM, Davidson NM, Hawkins ADK, Bartolo R, Majewski IJ, Ekert PG, Oshlack A. Clinker: visualizing fusion genes detected in RNA-seq data. Gigascience. 2018;7(7):giy079.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale J. Hedges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hedges, D.J. (2022). RNA-seq Fusion Detection in Clinical Oncology. In: Laganà, A. (eds) Computational Methods for Precision Oncology. Advances in Experimental Medicine and Biology, vol 1361. Springer, Cham. https://doi.org/10.1007/978-3-030-91836-1_9

Download citation