Skip to main content

Somatic and Germline Variant Calling from Next-Generation Sequencing Data

  • Chapter
  • First Online:
Computational Methods for Precision Oncology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1361))

Abstract

Re-sequencing of the human genome by next-generation sequencing (NGS) has been widely applied to discover pathogenic genetic variants and/or causative genes accounting for various types of diseases including cancers. The advances in NGS have allowed the sequencing of the entire genome of patients and identification of disease-associated variants in a reasonable timeframe and cost. The core of the variant identification relies on accurate variant calling and annotation. Numerous algorithms have been developed to elucidate the repertoire of somatic and germline variants. Each algorithm has its own distinct strengths, weaknesses, and limitations due to the difference in the statistical modeling approach adopted and read information utilized. Accurate variant calling remains challenging due to the presence of sequencing artifacts and read misalignments. All of these can lead to the discordance of the variant calling results and even misinterpretation of the discovery. For somatic variant detection, multiple factors including chromosomal abnormalities, tumor heterogeneity, tumor-normal cross contaminations, unbalanced tumor/normal sample coverage, and variants with low allele frequencies add even more layers of complexity to accurate variant identification. Given the discordances and difficulties, ensemble approaches have emerged by harmonizing information from different algorithms to improve variant calling performance. In this chapter, we first introduce the general scheme of variant calling algorithms and potential challenges at distinct stages. We next review the existing workflows of variant calling and annotation, and finally explore the strategies deployed by different callers as well as their strengths and caveats. Overall, NGS-based variant identification with careful consideration allows reliable detection of pathogenic variant and candidate variant selection for precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hampel H, Bennett RL, Buchanan A, Pearlman R, Wiesner GL, Guideline Development Group, American College of Medical Genetics and Genomics Professional Practice and Guidelines Committee and National Society of Genetic Counselors Practice Guidelines Committee. A practice guideline from the American College of Medical Genetics and Genomics and the National Society of Genetic Counselors: referral indications for cancer predisposition assessment. Genet Med. 2015;17(1):70–87.

    Article  PubMed  Google Scholar 

  2. Velazquez C, Lastra E, Avila Cobos F, Abella L, de la Cruz V, Hernando BA, Hernandez L, Martinez N, Infante M, Duran M. A comprehensive custom panel evaluation for routine hereditary cancer testing: improving the yield of germline mutation detection. J Transl Med. 2020;18(1):232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nielsen R, Paul JS, Albrechtsen A, Song YS. Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet. 2011;12(6):443–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics. 2014;30(20):2843–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27(21):2987–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, Kling DE, Gauthier LD, Levy-Moonshine A, Roazen D, et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. 2018;2018:201178.

    Google Scholar 

  9. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:12073907. 2012.

    Google Scholar 

  10. Chiang C, Layer RM, Faust GG, Lindberg MR, Rose DB, Garrison EP, Marth GT, Quinlan AR, Hall IM. SpeedSeq: ultra-fast personal genome analysis and interpretation. Nat Methods. 2015;12(10):966–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hwang S, Kim E, Lee I, Marcotte EM. Systematic comparison of variant calling pipelines using gold standard personal exome variants. Sci Rep. 2015;5:17875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Poplin R, Chang PC, Alexander D, Schwartz S, Colthurst T, Ku A, Newburger D, Dijamco J, Nguyen N, Afshar PT, et al. A universal SNP and small-indel variant caller using deep neural networks. Nat Biotechnol. 2018;36(10):983–7.

    Article  CAS  PubMed  Google Scholar 

  13. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, Gabriel S, Meyerson M, Lander ES, Getz G. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31(3):213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, Dooling DJ, Ley TJ, Mardis ER, Wilson RK, Ding L. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics. 2012;28(3):311–7.

    Article  CAS  PubMed  Google Scholar 

  15. Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 2008;18(11):1851–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fan Y, Xi L, Hughes DS, Zhang J, Zhang J, Futreal PA, Wheeler DA, Wang W. MuSE: accounting for tumor heterogeneity using a sample-specific error model improves sensitivity and specificity in mutation calling from sequencing data. Genome Biol. 2016;17(1):178.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Kallberg M, Chen X, Kim Y, Beyter D, Krusche P, et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods. 2018;15(8):591–4.

    Article  CAS  PubMed  Google Scholar 

  19. Saunders CT, Wong WS, Swamy S, Becq J, Murray LJ, Cheetham RK. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics. 2012;28(14):1811–7.

    Article  CAS  PubMed  Google Scholar 

  20. Miller NA, Farrow EG, Gibson M, Willig LK, Twist G, Yoo B, Marrs T, Corder S, Krivohlavek L, Walter A, et al. A 26-hour system of highly sensitive whole genome sequencing for emergency management of genetic diseases. Genome Med. 2015;7:100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Andrews S. FastQC: a quality control tool for high throughput sequence data [Online]. Available online at: http://www.bioinformaticsbabrahamacuk/projects/fastqc/ 2010.

  22. Pan B, Kusko R, Xiao W, Zheng Y, Liu Z, Xiao C, Sakkiah S, Guo W, Gong P, Zhang C, et al. Similarities and differences between variants called with human reference genome HG19 or HG38. BMC Bioinformatics. 2019;20(Suppl 2):101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Highnam G, Wang JJ, Kusler D, Zook J, Vijayan V, Leibovich N, Mittelman D. An analytical framework for optimizing variant discovery from personal genomes. Nat Commun. 2015;6:6275.

    Article  CAS  PubMed  Google Scholar 

  25. Thankaswamy-Kosalai S, Sen P, Nookaew I. Evaluation and assessment of read-mapping by multiple next-generation sequencing aligners based on genome-wide characteristics. Genomics. 2017;109(3–4):186–91.

    Article  CAS  PubMed  Google Scholar 

  26. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:13033997. 2013.

    Google Scholar 

  27. Xu C. A review of somatic single nucleotide variant calling algorithms for next-generation sequencing data. Comput Struct Biotechnol J. 2018;16:15–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu H, DiCarlo J, Satya RV, Peng Q, Wang Y. Comparison of somatic mutation calling methods in amplicon and whole exome sequence data. BMC Genomics. 2014;15:244.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Anzar I, Sverchkova A, Stratford R, Clancy T. NeoMutate: an ensemble machine learning framework for the prediction of somatic mutations in cancer. BMC Med Genet. 2019;12(1):63.

    Google Scholar 

  30. Shin HT, Choi YL, Yun JW, Kim NKD, Kim SY, Jeon HJ, Nam JY, Lee C, Ryu D, Kim SC, et al. Prevalence and detection of low-allele-fraction variants in clinical cancer samples. Nat Commun. 2017;8(1):1377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Huang W, Guo YA, Muthukumar K, Baruah P, Chang MM, Jacobsen Skanderup A. SMuRF: portable and accurate ensemble prediction of somatic mutations. Bioinformatics. 2019;35(17):3157–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang M, Luo W, Jones K, Bian X, Williams R, Higson H, Wu D, Hicks B, Yeager M, Zhu B. SomaticCombiner: improving the performance of somatic variant calling based on evaluation tests and a consensus approach. Sci Rep. 2020;10(1):12898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ding J, Bashashati A, Roth A, Oloumi A, Tse K, Zeng T, Haffari G, Hirst M, Marra MA, Condon A, et al. Feature-based classifiers for somatic mutation detection in tumour-normal paired sequencing data. Bioinformatics. 2012;28(2):167–75.

    Article  CAS  PubMed  Google Scholar 

  34. Fang LT, Afshar PT, Chhibber A, Mohiyuddin M, Fan Y, Mu JC, Gibeling G, Barr S, Asadi NB, Gerstein MB, et al. An ensemble approach to accurately detect somatic mutations using SomaticSeq. Genome Biol. 2015;16:197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wood DE, White JR, Georgiadis A, Van Emburgh B, Parpart-Li S, Mitchell J, Anagnostou V, Niknafs N, Karchin R, Papp E, et al. A machine learning approach for somatic mutation discovery. Sci Transl Med. 2018;10(457):eaar7939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, Flanagan A, Teague J, Futreal PA, Stratton MR, et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer. 2004;91(2):355–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kalatskaya I, Trinh QM, Spears M, McPherson JD, Bartlett JMS, Stein L. ISOWN: accurate somatic mutation identification in the absence of normal tissue controls. Genome Med. 2017;9(1):59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.

    Article  CAS  Google Scholar 

  39. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, Musolf A, Li Q, Holzinger E, Karyadi D, et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 2016;99(4):877–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, Hedges D, Ma X, Zhou X, Yergeau DA, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med. 2015;373(24):2336–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Auer PL, Reiner AP, Wang G, Kang HM, Abecasis GR, Altshuler D, Bamshad MJ, Nickerson DA, Tracy RP, Rich SS, et al. Guidelines for large-scale sequence-based complex trait association studies: lessons learned from the NHLBI exome sequencing project. Am J Hum Genet. 2016;99(4):791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 2011;39(17):e118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jian X, Boerwinkle E, Liu X. In silico prediction of splice-altering single nucleotide variants in the human genome. Nucleic Acids Res. 2014;42(22):13534–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li Q, Wang K. InterVar: clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines. Am J Hum Genet. 2017;100(2):267–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Edmonson MN, Patel AN, Hedges DJ, Wang Z, Rampersaud E, Kesserwan CA, Zhou X, Liu Y, Newman S, Rusch MC, et al. Pediatric Cancer Variant Pathogenicity Information Exchange (PeCanPIE): a cloud-based platform for curating and classifying germline variants. Genome Res. 2019;29(9):1555–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, Mudge JM, Sisu C, Wright J, Armstrong J, et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019;47(D1):D766–73.

    Article  CAS  PubMed  Google Scholar 

  51. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F. The Ensembl variant effect predictor. Genome Biol. 2016;17(1):122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6(2):80–92.

    Article  CAS  Google Scholar 

  54. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol. 2010;6(12):e1001025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40(Web Server issue):W452–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47(D1):D886–94.

    Article  CAS  PubMed  Google Scholar 

  57. Guo Y, Li J, Li CI, Long J, Samuels DC, Shyr Y. The effect of strand bias in Illumina short-read sequencing data. BMC Genomics. 2012;13:666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Smit A, Hubley R, Green P. RepeatMasker Open-4.0. http://www.repeatmaskerorg 2013–2015.

  59. Ross MG, Russ C, Costello M, Hollinger A, Lennon NJ, Hegarty R, Nusbaum C, Jaffe DB. Characterizing and measuring bias in sequence data. Genome Biol. 2013;14(5):R51.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dou Y, Kwon M, Rodin RE, Cortes-Ciriano I, Doan R, Luquette LJ, Galor A, Bohrson C, Walsh CA, Park PJ. Accurate detection of mosaic variants in sequencing data without matched controls. Nat Biotechnol. 2020;38(3):314–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sendorek DH, Caloian C, Ellrott K, Bare JC, Yamaguchi TN, Ewing AD, Houlahan KE, Norman TC, Margolin AA, Stuart JM, et al. Germline contamination and leakage in whole genome somatic single nucleotide variant detection. BMC Bioinformatics. 2018;19(1):28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ruiz-Pesini E, Lott MT, Procaccio V, Poole JC, Brandon MC, Mishmar D, Yi C, Kreuziger J, Baldi P, Wallace DC. An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res. 2007;35(Database issue):D823–8.

    Article  CAS  PubMed  Google Scholar 

  63. Payne BA, Wilson IJ, Hateley CA, Horvath R, Santibanez-Koref M, Samuels DC, Price DA, Chinnery PF. Mitochondrial aging is accelerated by anti-retroviral therapy through the clonal expansion of mtDNA mutations. Nat Genet. 2011;43(8):806–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Santibanez-Koref M, Griffin H, Turnbull DM, Chinnery PF, Herbert M, Hudson G. Assessing mitochondrial heteroplasmy using next generation sequencing: a note of caution. Mitochondrion. 2019;46:302–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ding J, Sidore C, Butler TJ, Wing MK, Qian Y, Meirelles O, Busonero F, Tsoi LC, Maschio A, Angius A, et al. Assessing mitochondrial DNA variation and copy number in lymphocytes of ~2,000 Sardinians using tailored sequencing analysis tools. PLoS Genet. 2015;11(7):e1005306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Edge P, Bansal V. Longshot enables accurate variant calling in diploid genomes from single-molecule long read sequencing. Nat Commun. 2019;10(1):4660.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler A, Schatz MC. Accurate detection of complex structural variations using single-molecule sequencing. Nat Methods. 2018;15(6):461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ebler J, Haukness M, Pesout T, Marschall T, Paten B. Haplotype-aware diplotyping from noisy long reads. Genome Biol. 2019;20(1):116.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Luo R, Sedlazeck FJ, Lam TW, Schatz MC. A multi-task convolutional deep neural network for variant calling in single molecule sequencing. Nat Commun. 2019;10(1):998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ramachandran A, Lumetta SS, Klee E, Chen D. HELLO: a hybrid variant calling approach. bioRxiv. 2003;2020(2020):2023.004473.

    Google Scholar 

  72. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  73. Wu TD, Reeder J, Lawrence M, Becker G, Brauer MJ. GMAP and GSNAP for genomic sequence alignment: enhancements to speed, accuracy, and functionality. Methods Mol Biol. 2016;1418:283–334.

    Article  PubMed  Google Scholar 

  74. Liu F, Zhang Y, Zhang L, Li Z, Fang Q, Gao R, Zhang Z. Systematic comparative analysis of single-nucleotide variant detection methods from single-cell RNA sequencing data. Genome Biol. 2019;20(1):242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Singer J, Kuipers J, Jahn K, Beerenwinkel N. Single-cell mutation identification via phylogenetic inference. Nat Commun. 2018;9(1):5144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Poirion O, Zhu X, Ching T, Garmire LX. Using single nucleotide variations in single-cell RNA-seq to identify subpopulations and genotype-phenotype linkage. Nat Commun. 2018;9(1):4892.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Rodriguez-Meira A, Buck G, Clark SA, Povinelli BJ, Alcolea V, Louka E, McGowan S, Hamblin A, Sousos N, Barkas N, et al. Unravelling intratumoral heterogeneity through high-sensitivity single-cell mutational analysis and parallel RNA sequencing. Mol Cell. 2019;73(6):1292–305, e1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K, Fisher JM, Rodman C, Mount C, Filbin MG, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature. 2016;539(7628):309–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Roth A, Ding J, Morin R, Crisan A, Ha G, Giuliany R, Bashashati A, Hirst M, Turashvili G, Oloumi A, et al. JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/tumour paired next-generation sequencing data. Bioinformatics. 2012;28(7):907–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gerstung M, Beisel C, Rechsteiner M, Wild P, Schraml P, Moch H, Beerenwinkel N. Reliable detection of subclonal single-nucleotide variants in tumour cell populations. Nat Commun. 2012;3:811.

    Article  PubMed  CAS  Google Scholar 

  81. Wilm A, Aw PP, Bertrand D, Yeo GH, Ong SH, Wong CH, Khor CC, Petric R, Hibberd ML, Nagarajan N. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res. 2012;40(22):11189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shiraishi Y, Sato Y, Chiba K, Okuno Y, Nagata Y, Yoshida K, Shiba N, Hayashi Y, Kume H, Homma Y, et al. An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data. Nucleic Acids Res. 2013;41(7):e89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hansen NF, Gartner JJ, Mei L, Samuels Y, Mullikin JC. Shimmer: detection of genetic alterations in tumors using next-generation sequence data. Bioinformatics. 2013;29(12):1498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Christoforides A, Carpten JD, Weiss GJ, Demeure MJ, Von Hoff DD, Craig DW. Identification of somatic mutations in cancer through Bayesian-based analysis of sequenced genome pairs. BMC Genomics. 2013;14:302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim S, Jeong K, Bhutani K, Lee J, Patel A, Scott E, Nam H, Lee H, Gleeson JG, Bafna V. Virmid: accurate detection of somatic mutations with sample impurity inference. Genome Biol. 2013;14(8):R90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Kassahn KS, Holmes O, Nones K, Patch AM, Miller DK, Christ AN, Harliwong I, Bruxner TJ, Xu Q, Anderson M, et al. Somatic point mutation calling in low cellularity tumors. PLoS One. 2013;8(11):e74380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cantarel BL, Weaver D, McNeill N, Zhang J, Mackey AJ, Reese J. BAYSIC: a Bayesian method for combining sets of genome variants with improved specificity and sensitivity. BMC Bioinformatics. 2014;15:104.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wang W, Wang P, Xu F, Luo R, Wong MP, Lam TW, Wang J. FaSD-somatic: a fast and accurate somatic SNV detection algorithm for cancer genome sequencing data. Bioinformatics. 2014;30(17):2498–500.

    Article  CAS  PubMed  Google Scholar 

  89. Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SRF, WGS500 Consortium, Wilkie AOM, McVean G, Lunter G. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat Genet. 2014;46(8):912–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Usuyama N, Shiraishi Y, Sato Y, Kume H, Homma Y, Ogawa S, Miyano S, Imoto S. HapMuC: somatic mutation calling using heterozygous germ line variants near candidate mutations. Bioinformatics. 2014;30(23):3302–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Radenbaugh AJ, Ma S, Ewing A, Stuart JM, Collisson EA, Zhu J, Haussler D. RADIA: RNA and DNA integrated analysis for somatic mutation detection. PLoS One. 2014;9(11):e111516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Shi Y. SOAPsnv: an integrated tool for somatic single-nucleotide variants detection with or without normal tissues in cancer genome. J Clin Oncol. 2014;32(15_suppl):e22086.

    Article  Google Scholar 

  93. Sengupta S, Gulukota K, Zhu Y, Ober C, Naughton K, Wentworth-Sheilds W, Ji Y. Ultra-fast local-haplotype variant calling using paired-end DNA-sequencing data reveals somatic mosaicism in tumor and normal blood samples. Nucleic Acids Res. 2016;44(3):e25.

    Article  PubMed  CAS  Google Scholar 

  94. Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, McEwen R, Johnson J, Dougherty B, Barrett JC, Dry JR. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res. 2016;44(11):e108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Liu Y, Loewer M, Aluru S, Schmidt B. SNVSniffer: an integrated caller for germline and somatic single-nucleotide and indel mutations. BMC Syst Biol. 2016;10(Suppl 2):47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Spinella JF, Mehanna P, Vidal R, Saillour V, Cassart P, Richer C, Ouimet M, Healy J, Sinnett D. SNooPer: a machine learning-based method for somatic variant identification from low-pass next-generation sequencing. BMC Genomics. 2016;17(1):912.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Jones D, Raine KM, Davies H, Tarpey PS, Butler AP, Teague JW, Nik-Zainal S, Campbell PJ. cgpCaVEManWrapper: simple execution of CaVEMan in order to detect somatic single nucleotide variants in NGS data. Curr Protoc Bioinformatics. 2016;56:15.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Carrot-Zhang J, Majewski J. LoLoPicker: detecting low allelic-fraction variants from low-quality cancer samples. Oncotarget. 2017;8(23):37032–40.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Sahraeian SME, Liu R, Lau B, Podesta K, Mohiyuddin M, Lam HYK. Deep convolutional neural networks for accurate somatic mutation detection. Nat Commun. 2019;10(1):1041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Meng J, Victor B, He Z, Liu H, Jiang T. DeepSSV: detecting somatic small variants in paired tumor and normal sequencing data with convolutional neural network. Brief Bioinform. 2020;22(4):bbaa272.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ti-Cheng Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chang, TC., Xu, K., Cheng, Z., Wu, G. (2022). Somatic and Germline Variant Calling from Next-Generation Sequencing Data. In: Laganà, A. (eds) Computational Methods for Precision Oncology. Advances in Experimental Medicine and Biology, vol 1361. Springer, Cham. https://doi.org/10.1007/978-3-030-91836-1_3

Download citation

Publish with us

Policies and ethics