Skip to main content

A Stochastic SVIR Model with Imperfect Vaccine and External Source of Infection

  • Conference paper
  • First Online:
Performance Engineering and Stochastic Modeling (EPEW 2021, ASMTA 2021)

Abstract

A stochastic SIR (Susceptible - Infected - Recovered) type model, with external source of infection, is considered for the spread of a disease in a finite population of constant size. Our interest is in studying this process in the situation where some individuals have been vaccinated prior to the start of the epidemic, but where the efficacy of the vaccine to prevent infection is not perfect. The evolution of the epidemic is represented by an absorbing three-dimensional continuous-time Markov chain. We focus on analysing the time for a threshold number of individuals to become infected, and carry out a global sensitivity analysis for the impact of varying model parameters on the summary statistic of interest.

Supported by the Government of Spain, Department of Science, Innovation and Universities; European Commission project: PGC2018-097704-B-I00 and Banco Santander and Complutense University of Madrid, Pre-doctoral Contract: CT 42/18-CT43/18.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heathcote, H.: Asymptotic behavior in a deterministic epidemic model. Bull. Math. Biol. 35(5), 607–14 (1973). https://doi.org/10.1016/S0092-8240(73)80057-6

    Article  Google Scholar 

  2. Bartlett, M.S.: Deterministic and stochastic models for recurrent epidemics. In: Contributions to Biology and Problems of Health. University of California Press California (2020). https://doi.org/10.1525/9780520350717-007

  3. Andersson, H., Britton, T.: Stochastic Epidemic Models and Their Statistical Analysis. Lecture Notes in Statistics, Springer, New York (2000). https://doi.org/10.1007/978-1-4612-1158-7

    Book  MATH  Google Scholar 

  4. Allen, L.J.S.: A primer on stochastic epidemic models: formulation, numerical simulation, and analysis. Infect. Dis. Model. 2(2), 128–142 (2017). https://doi.org/10.1016/j.idm.2017.03.001

    Article  Google Scholar 

  5. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 115, 700–721 (1927). https://doi.org/10.1098/rspa.1927.0118

    Article  MATH  Google Scholar 

  6. Bailey, N.T.: A simple stochastic epidemic. Biometrika 37(3–4), 193–202 (1950). https://doi.org/10.2307/2333107

    Article  MathSciNet  MATH  Google Scholar 

  7. Whittle, P.: The outcome of a stochastic epidemic–a note on Bailey’s paper. Biometrika 42(1–2), 116–122 (1955). https://doi.org/10.2307/2333427

    Article  MathSciNet  MATH  Google Scholar 

  8. López-García, M.: Stochastic descriptors in an SIR epidemic model for heterogeneous individuals in small networks. Math. Biosci. 271, 42–61 (2016). https://doi.org/10.1016/j.mbs.2015.10.010

    Article  MathSciNet  MATH  Google Scholar 

  9. Artalejo, J.R., Economou, A., Lopez-Herrero, M.J.: Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size. J. Math. Biol. 67(4), 799–831 (2013). https://doi.org/10.1007/s00285-012-0570-5

    Article  MathSciNet  MATH  Google Scholar 

  10. Almaraz, E., Gómez-Corral, A.: On SIR-models with Markov-modulated events: length of an outbreak, total size of the epidemic and number of secondary infections. Discret. Contin. Dyn. Syst.-B 23(6), 2153 (2018). https://doi.org/10.3934/dcdsb.2018229

    Article  MathSciNet  MATH  Google Scholar 

  11. Gamboa, M., Lopez-Herrero, M.J.: On the number of periodic inspections during outbreaks of discrete-time stochastic SIS epidemic models. Mathematics 6(8), 128 (2018). https://doi.org/10.3390/math6080128

    Article  MATH  Google Scholar 

  12. Jacquez, J.A., O’Neill, P.: Reproduction numbers and thresholds in stochastic epidemic models I. Homogeneous populations. Math. Biosci. 107(2), 161–186 (1991). https://doi.org/10.1016/0025-5564(91)90003-2

    Article  MATH  Google Scholar 

  13. Nguyen, C., Carlson, J.M.: Optimizing real-time vaccine allocation in a stochastic SIR model. PloS One 11(4), e0152950 (2016). https://doi.org/10.1371/journal.pone.0152950

    Article  Google Scholar 

  14. Ball, F., Sirl, D.: Evaluation of vaccination strategies for SIR epidemics on random networks incorporating household structure. J. Math. Biol. 76(1), 483–530 (2018). https://doi.org/10.1007/s00285-017-1139-0

    Article  MathSciNet  MATH  Google Scholar 

  15. Arino, J., McCluskey, C.C., van den Driessche, P.: Global results for an epidemic model with vaccination that exhibits backward bifurcation. SIAM J. Appl. Math. 64(1), 260–276 (2003). https://doi.org/10.1137/S0036139902413829

    Article  MathSciNet  MATH  Google Scholar 

  16. Kribs-Zaleta, C.M., Martcheva, M.: Vaccination strategies and backward bifurcation in an age-since-infection structured model. Math. Biosci. 177, 317–332 (2002). https://doi.org/10.1016/S0025-5564(01)00099-2

    Article  MathSciNet  MATH  Google Scholar 

  17. Ball, F., Lyne, O.: Optimal vaccination schemes for epidemics among a population of households, with application to variola minor in Brazil. Stat. Methods Med. Res. 15(5), 481–497 (2006). https://doi.org/10.1177/0962280206071643

    Article  MathSciNet  MATH  Google Scholar 

  18. Charania, N.A., Moghadas, S.M.: Modelling the effects of booster dose vaccination schedules and recommendations for public health immunization programs: the case of Haemophilus influenzae serotype b. BMC Public Health 17(1), 1–8 (2017). https://doi.org/10.1186/s12889-017-4714-9

    Article  Google Scholar 

  19. Gandon, S., Mackinnon, M.J., Nee, S., Read, A.F.: Imperfect vaccines and the evolution of pathogen virulence. Nature 414(6865), 751–756 (2001). https://doi.org/10.1038/414751a

    Article  Google Scholar 

  20. Magpantay, F.M., Riolo, M.A., De Celles, M.D., King, A.A., Rohani, P.: Epidemiological consequences of imperfect vaccines for immunizing infections. SIAM J. Appl. Math. 74(6), 1810–1830 (2014). https://doi.org/10.1137/140956695

    Article  MathSciNet  MATH  Google Scholar 

  21. Iannelli, M., Martcheva, M., Li, X.Z.: Strain replacement in an epidemic model with super-infection and perfect vaccination. Math. Biosci. 195, 23–46 (2005). https://doi.org/10.1016/j.mbs.2005.01.004

    Article  MathSciNet  MATH  Google Scholar 

  22. Demicheli, V., Rivetti, A., Debalini, M.G., Di Pietrantonj, C.: Vaccines for measles, mumps and rubella in children. Cochrane Database Syst. Rev. 2, CD004407 (2012). https://doi.org/10.1002/ebch.1948

  23. Ball, F., O’Neill, P.D., Pike, J.: Stochastic epidemic models in structured populations featuring dynamic vaccination and isolation. J. Appl. Probab. 44(3), 571–585 (2007). https://doi.org/10.1239/jap/1189717530

    Article  MathSciNet  MATH  Google Scholar 

  24. Gamboa, M., Lopez-Herrero, M.J.: Measuring infection transmission in a stochastic SIV model with infection reintroduction and imperfect vaccine. Acta Biotheoretica 68(4), 395–420 (2020). https://doi.org/10.1007/s10441-019-09373-9

    Article  Google Scholar 

  25. Gamboa, M., Lopez-Herrero, M.J.: The effect of setting a warning vaccination level on a stochastic SIVS model with imperfect vaccine. Mathematics 8(7), 1136 (2020). https://doi.org/10.3390/math8071136

    Article  Google Scholar 

  26. Kiouach, D., Boulaasair, L.: Stationary distribution and dynamic behaviour of a stochastic SIVR epidemic model with imperfect vaccine. J. Appl. Math. (2018). https://doi.org/10.1155/2018/1291402

    Article  MathSciNet  MATH  Google Scholar 

  27. El Koufi, A., Adnani, J., Bennar, A., Yousfi, N.: Analysis of a stochastic SIR model with vaccination and nonlinear incidence rate. Int. J. Diff. Equ. (2019). https://doi.org/10.1155/2019/9275051

    Article  MathSciNet  MATH  Google Scholar 

  28. Gómez-Corral, A., López-García, M., Lopez-Herrero, M.J., Taipe, D.: On first-passage times and sojourn times in finite QBD processes and their applications in epidemics. Mathematics 8(10), 1718 (2020). https://doi.org/10.3390/math8101718

    Article  Google Scholar 

  29. Gloub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn. Johns Hopkins University Press (1996). https://doi.org/10.2307/3619868

  30. Cohen, A.M.: Numerical Methods for Laplace Transforms Inversion. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-68855-8

    Book  MATH  Google Scholar 

  31. Artalejo, J.R., Lopez-Herrero, M.J.: On the exact measure of the disease spread in stochastic epidemic models. Bull. Math. Biol. 75, 1031–1050 (2013). https://doi.org/10.1007/s11538-013-9836-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Gamboa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gamboa, M., López-García, M., Lopez-Herrero, M.J. (2021). A Stochastic SVIR Model with Imperfect Vaccine and External Source of Infection. In: Ballarini, P., Castel, H., Dimitriou, I., Iacono, M., Phung-Duc, T., Walraevens, J. (eds) Performance Engineering and Stochastic Modeling. EPEW ASMTA 2021 2021. Lecture Notes in Computer Science(), vol 13104. Springer, Cham. https://doi.org/10.1007/978-3-030-91825-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91825-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91824-8

  • Online ISBN: 978-3-030-91825-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics