Abstract
Multicriteria Decision Making/Aiding (MCDM/A) techniques are usually required to solve practical decision-making problems that consider multiple criteria structured based on a value tree. Structuring criteria based on a hierarchy is common specially in problems in which the number of criteria is high, and therefore MCDM/A techniques should be prompted to deal with such situations. The well-known FITradeoff method is being widely applied for solving practical multicriteria problems due to its easiness of use and attractive flexibility features. However, the current version of this method is suitable for dealing with single-level criteria decision problems only. Therefore, in this context, this paper proposes a approach for solving multicriteria decision-making problems with hierarchically structured criteria in the FITradeoff method. This approach uses partial information of preferences provided by the decision maker, based on a structured process within the scope of the multi-attribute value theory, to find the values of the scale constants. The model is presented for both choice and ranking problematics and it is based on the traditional tradeoff procedure, which is axiomatically robust. The model effectiveness is verified after being applied to three problems adapted from the literature to both choice and ranking problematics. As a result, it was observed that in the choice problematic, in all analyzed problems, a single optimal alternative was found and always with 6 or less questions answered. In turn, in the ranking problematic in all cases either a complete order or a complete preorder was found with 17 or less questions answered.
Keywords
- Hierarchical criteria
- Multiple Criteria Decision-Making Aiding (MCDMA)
- FITradeoff
This is a preview of subscription content, access via your institution.
Buying options

(Source: Adapted from Poyhonen et al. (2001))

(Source: Belton and Stewart (2002))


(Source: Adapted from Belton and Stewart (2002))

(Source: Adapted from Xia and Wu (2007)).

(Source: adapted from Keeney and Raifa (1993)).


References
Belton, V., Stewart, T.: Multiple Criteria Decision Analysis: An Integrated Approach. Springer, Boston (2002). https://doi.org/10.1007/978-1-4615-1495-4
Belton, V., Goodwin, P.: Remarks on the application of the analytic hierarchy process to judgmental forecasting. Int. J. Forecast. 12, 155–161 (1996). https://doi.org/10.1016/0169-2070(95)00643-5
Bouyssou, D., Jacquet-Lagrèze, E., Perny, P., Slowiński, R., Vanderpooten, D., Vincke, P.: Aiding Decisions with Multiple Criteria. Springer, New York (2002). https://doi.org/10.1007/978-1-4615-0843-4
Carrillo, P.A.A., Roselli, L.R.P., Frej, E.A., de Almeida, A.T.: Selecting an agricultural technology package based on the flexible and interactive tradeoff method. Ann. Oper. Res. (2018). https://doi.org/10.1007/s10479-018-3020-y
De Almeida, A.T., Almeida, J.A., Costa, A.P.C.S., Almeida-Filho, A.T.: A new method for elicitation of criteria weights in additive models: flexible and interactive tradeoff. Eur. J. Oper. Res. 250, 179–191 (2016). https://doi.org/10.1016/j.ejor.2015.08.058
de Almeida, A.T., Frej, E.A., Roselli, L.R.P.: Combining holistic and decomposition paradigms in preference modeling with the flexibility of FITradeoff. CEJOR 29(1), 7–47 (2021). https://doi.org/10.1007/s10100-020-00728-z
Dell’ovo, M., Oppio, A., Capolongo, S.: Sistema de Apoio à Decisão para a Localização de Estabelecimentos de Saúde: ferramenta de avaliação sithealth. Springer, Milão (2020)
Edwards, W., Barron, F.H.: SMARTS and SMARTER: improved simple methods for multiattribute utility measurement. Organ. Behav. Hum. Decis. Process. 60, 306–325 (1994). https://doi.org/10.1006/obhd.1994.1087
Frej, E.A., Roselli, L.R.P., Almeida, J.A., de Almeida, A.T.: A multicriteria decision model for supplier selection in a food industry based on FITradeoff Method. Hindawi (2017). https://doi.org/10.1155/2017/4541914
Frej, E.A., de Almeida, A.T., Costa, A.P.C.S.: Using data visualization for ranking alternatives with partial information and interactive tradeoff elicitation. Oper. Res. Int. J. 19(4), 909–931 (2019). https://doi.org/10.1007/s12351-018-00444-2
Frej, E.A., Ekel, P., de Almeida, A.T.: A benefit-to-cost ratio based approach for portfolio selection under multiple criteria with incomplete preference information. Inf. Sci. 545, 487–498 (2021). https://doi.org/10.1016/j.ins.2020.08.119
Fossile, D.K., Frej, E.A., Costa, S.E.G., Lima, E.P., de Almeida, A.T.: Selecting the most viable renewable energy source for Brazilian ports using the FITradeoff method. J. Clean. Prod. 260 (2020). https://doi.org/10.1016/j.jclepro.2020.121107
Kajanus, M., Kangas, J., Kurttila, M.: The use of value focused thinking and the A’WOT hybrid method in tourism management. Tour. Manag. 25, 499–506 (2004). https://doi.org/10.1016/S0261-5177(03)00120-1
Keeney, R.L.: Value-Focused Thinking: A Path to Creative Decision Making. Harvard University Press, Cambridge (1992)
Keeney, R.L.: Value-focused thinking: Identifying decision opportunities and creating alternatives. Eur. J. Oper. Res. 92, 537–549 (1996). https://doi.org/10.1016/0377-2217(96)00004-5
Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives. Cambridge University Press, Cambridge (1993)
Keeney, R.L., Raiffa, H.: Decision Analysis with Multiple Conflicting Objectives. Cambridge University Press, New York (1976)
Louvieris, P., Gregoriades, A., Garn, W.: Assessing critical success factors for military decision support. Expert Syst. Appl. 37, 8229–8241 (2010). https://doi.org/10.1016/j.eswa.2010.05.062
Pergher, I., Frej, E.A., Roselli, L.R.P., De Almeida, A.T.: Integrating simulation and FITradeoff method for scheduling rules selection in job-shop production systems. Int. J. Prod. Econ. 227 (2020). https://doi.org/10.1016/j.ijpe.2020.107669
Poyhonen, M., Vrolijk, H., Hamalainen, R.P.: Behavioral and procedural consequences of structural variation in value trees. Eur. J. Oper. Res. 134, 216–227 (2001). https://doi.org/10.1016/S0377-2217(00)00255-1
Poyhonen, M., Hamalainen, R.P.: Notes on the weighting biases in value trees. J. Behav. Decis. Mak. 11, 139–150 (1998). https://doi.org/10.1002/(SICI)1099-0771(199806)11:2%3c139::AID-BDM293%3e3.0.CO;2-M
Rodrigues, L.V.S., Casado, R.S.G.R., Carvalho, E.N., Silva, M.M.: Using FITradeoff in a ranking problem for supplier selection under TBL performance evaluation: an application in the textile sector. Production 30 (2020). https://doi.org/10.1590/0103-6513.20190032
Roselli, L.R.P., Frej, E.A., de Almeida, A.T.: Neuroscience experiment for graphical visualization in the FITradeoff decision support system. In: Chen, Y., Kersten, G., Vetschera, R., Xu, H. (eds.) GDN 2018. LNBIP, vol. 315, pp. 56–69. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92874-6_5
Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)
Salo, A.A., Hamalainen, R.P.: Preference assessment by imprecise ratio statements. Oper. Res. Int. J. 40, 1053–1061 (1992). https://doi.org/10.1287/opre.40.6.1053
Salo, A.A., Hamalainen, R.P.: Preference ratios in multiattribute evaluation (PRIME)—elicitation and decision procedures under incomplete information. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 31, 533–545 (2001). https://doi.org/10.1109/3468.983411
Salo, A., Punkka, A.: Rank inclusion in criteria hierarchies. Eur. J. Oper. Res. 163, 338–356 (2005). https://doi.org/10.1016/j.ejor.2003.10.014
Von Winterfeldt, D., Edwards, W.: Decision Analysis and Behavioral Research. Cambridge University Press, New York (1986)
Xia, W., Wu, Z.: Supplier selection with multiple criteria in volume discount environments. Omega 35(5), 494–504 (2007). https://doi.org/10.1016/j.omega.2005.09.002
Weber, M., Borcherding, K.: Behavioral influences on weight judgments in multiattribute decision making. Eur. J. Oper. Res. 67, 1–12 (1993). https://doi.org/10.1016/0377-2217(93)90318-H
Acknowledgments
This work had support from the Brazilian Research Council (CNPq) and Coordination for the Improvement of Higher Education Personnel (CAPES).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Vieira, M.J.L., Frej, E.A., de Almeida, A.T., Viana, F.F.C.L. (2021). Incorporating Hierarchical Criteria Structure in the Fitradeoff Method. In: de Almeida, A.T., Morais, D.C. (eds) Innovation for Systems Information and Decision. INSID 2021. Lecture Notes in Business Information Processing, vol 435. Springer, Cham. https://doi.org/10.1007/978-3-030-91768-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-91768-5_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91767-8
Online ISBN: 978-3-030-91768-5
eBook Packages: Computer ScienceComputer Science (R0)