Skip to main content

The Periodic Table of Torture

  • 95 Accesses

Part of the Palgrave Studies in Media and Environmental Communication book series (PSMEC)

Abstract

This chapter discusses the carbon emissions and substantial other harms embodied in gaming hardware, analyzing the results of an inductively coupled plasma mass spectrometry (ICP-MS) test of a small section of the PlayStation 4 APU—the system-on-a-chip that performs CPU and GPU functions. This test provides a list of the atomic elements contained inside the device, including those most likely to be present in greater quantities. Arranging this element-by-element analysis as a ‘periodic table of torture’ the chapter investigates the significance of each element, finding their source in the earth itself, the uses that might explain its presence in the sample, and the environmental burdens that mining and extraction of this element produces. This chapter can be used as a reference list for researchers studying other digital devices and future gaming hardware, and it can also be read in order to build up a fascinating and horrifying picture of the damage to the natural world produced by the design and manufacture of modern gaming consoles.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-91705-0_7
  • Chapter length: 58 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-91705-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3.

References

  • Acosta, M., Novak, N., Rojas, V., Patel, S., Vaish, R., Koruza, J., Rossetti, G. A., Jr., & Rödel, J. (2017). BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Applied Physics Reviews, 4(4), 041305.

    Google Scholar 

  • Agus, C., Wulandari, D., Primananda, E., Hendryan, A., & Harianja, V. (2017). The role of soil amendment on tropical post tin mining area in Bangka island Indonesia for dignified and sustainable environment and life. IOP Conference Series: Earth and Environmental Science, 83(1). IOP Publishing.

    Google Scholar 

  • Alshaebi, F. Y., Yaacob, W. Z. W., Samsudin, A. R., & Alsabahi, E. (2009). Risk assessment at abandoned tin mine in Sungai Lembing, Pahang, Malaysia. Electronic Journal of Geotechnical Engineering, 14, 1–9.

    Google Scholar 

  • AmCham Chile. (n.d.). Chile’s Mining Industry. https://www.amchamchile.cl/UserFiles/File/Mining%20Industry.pdf. Accessed 1 Apr 2021.

  • American Elements. (2020). Zinc (Zn) | American elements. https://www.americanelements.com/zn.html. Accessed 1 Apr 2021.

  • Andrae, A. S. G., & Edler, T. (2015). On global electricity usage of communication technology: Trends to 2030. Challenges, 6(1), 117–157.

    Google Scholar 

  • Aslan, J. (2020). Climate change implications of gaming products and services. PhD dissertation, University of Surrey.

    Google Scholar 

  • Australian Aluminium Council. (2020). Bauxite mining. https://aluminium.org.au/interactive-flowchart/bauxite-mining-chart/. Accessed 1 Apr, 2021.

  • Bartos, S. C. (2002). Update on EPA’s magnesium industry partnership for climate protection. Presented at the 131st TMS Annual Meeting, February 17–21, Seattle, Washington.

    Google Scholar 

  • Bratton, B. H. (2016). The stack: On software and sovereignty. MIT press.

    Google Scholar 

  • Chen, H.-W. (2006). Gallium, indium, and arsenic pollution of groundwater from a semiconductor manufacturing area of Taiwan. Bulletin of Environmental Contamination and Toxicology, 77(2), 289–296.

    Google Scholar 

  • CoolLaboratory. (2010). EG-SAFETY DATA SHEET (EG Nr. 1907/2006). http://www.coollaboratory.com/pdf/safetydatasheet_liquid_ultra_englisch.pdf

  • Cubitt, S. (2016). Finite media. Duke University Press.

    Google Scholar 

  • Das, S. (2012). Achieving carbon neutrality in the global aluminum industry. JOM, 64(2), 285–290.

    Google Scholar 

  • Dept of Energy and Mining, Government of South Australia. (2021). Barite. https://energymining.sa.gov.au/minerals/mineral_commodities/barite. Accessed 2 Apr 2021.

  • EPA. (1998). Chromium (VI); CASRN 18540-29-9. Integrated Risk Information System (IRIS) chemical assessment summary. U.S. Environmental Protection Agency, Washington, DC. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0144_summary.pdf. Accessed online 13 Jan 2020.

  • EPA. (2005). Toxicological review of zinc and compounds. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • EPA. (2008). Lead and copper rule: Quick reference guide. US Environmental Protection Agency Office of Water. https://www.epa.gov/dwreginfo/lead-and-copper-rule

  • EPA. (2016, March). Aquatic life ambient water quality criteria Update for Cadmium – 2016. US Environmental Protection Agency Office of Water. http://www.epa.gov/wqc/aquatic-life-criteria-cadmium. Accessed 2 Jan 2020.

  • EPA. (2018). Toxicological review of hexavalent chromium. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • EPA. (2020). Aquatic life criteria – Copper. U.S. Environmental Protection Agency, Washington, DC. https://www.epa.gov/wqc/aquatic-life-criteria-copper. Accessed 1 Apr 2021.

  • European Commission. 2021. Internal market, industry, entrepreneurship and SMEs | CE marking. https://ec.europa.eu/growth/single-market/ce-marking/. Accessed 2 Apr 2021.

  • Filella, M. (2010). How reliable are environmental data on ‘orphan’ elements? The case of bismuth concentrations in surface waters. Journal of Environmental Monitoring, 12(1), 90–109.

    Google Scholar 

  • FranceTVInfo. (2013, February 17). Le long combat contre la pollution de la Méditerranée par la Montedison. FranceTVInfo. https://france3-regions.francetvinfo.fr/corse/2013/02/17/le-long-combat-contre-la-pollution-de-la-mediterranee-par-la-montedison-201739.html. Accessed 1 Apr 2021.

  • Fuchs, C. (2008). The implications of new information and communication technologies for sustainability. Environment, Development and Sustainability, 10(3), 291–309.

    Google Scholar 

  • Garnaut, R. (2019). Superpower. Black Inc.

    Google Scholar 

  • Glaister, B. J., & Mudd, G. M. (2010). The environmental costs of platinum–PGM mining and sustainability: Is the glass half-full or half-empty? Minerals Engineering, 23(5), 438–450.

    Google Scholar 

  • Gordon, L. (2019, December 5). The environmental impact of a PlayStation 4. The Verge. https://www.theverge.com/2019/12/5/20985330/ps4-sony-playstation-environmental-impact-carbon-footprint-manufacturing-25-anniversary

  • Graeber, D. (2011). Debt: The first five thousand years. Melville House.

    Google Scholar 

  • Grossman, E. (2006). High tech trash: Digital devices, hidden toxics, and human health. Island Press.

    Google Scholar 

  • Guertin, J., Jacobs, J. A., & Avakian, C. P. (Eds.). (2004). Chromium (VI) handbook. CRC Press.

    Google Scholar 

  • Guins, R. (2014). Game after: A cultural study of video game afterlife. MIT Press.

    Google Scholar 

  • Guha, N., Loomis, D., Guyton, K. Z., Grosse, Y., El Ghissassi, F., Bouvard, V., Benbrahim-Tallaa, L., Vilahur, N., Muller, K., & Straif, K. (2017). Carcinogenicity of welding, molybdenum trioxide, and indium tin oxide. The Lancet Oncology, 18(5), 581–582.

    Google Scholar 

  • Gura, D. (2010, October 5). Toxic red sludge spill from Hungarian Aluminum Plant ‘An Ecological Disaster’. NPR. https://www.npr.org/sections/thetwo-way/2010/10/05/130351938/red-sludge-from-hungarian-aluminum-plant-spill-an-ecological-disaster. Accessed 1 Apr 2021.

  • Haque, N., & Norgate, T. (2014). The greenhouse gas footprint of in-situ leaching of uranium, gold and copper in Australia. Journal of Cleaner Production, 84, 382–390.

    Google Scholar 

  • Hong, J., Zhaohe, Y., Shi, W., Hong, J., Qi, C., & Ye, L. (2017). Life cycle environmental and economic assessment of lead refining in China. The International Journal of Life Cycle Assessment, 22(6), 909–918.

    Google Scholar 

  • Ibeanu, I. G. E. (2003). Tin mining and processing in Nigeria: Cause for concern? Journal of Environmental Radioactivity, 64(1), 59–66.

    Google Scholar 

  • Jondreville, C., Revy, P. S., & Dourmad, J.-Y. (2003). Dietary means to better control the environmental impact of copper and zinc by pigs from weaning to slaughter. Livestock Production Science, 84(2), 147–156.

    Google Scholar 

  • Kasap, S., & Capper, P. (Eds.). (2017). Springer handbook of electronic and photonic materials. Springer.

    Google Scholar 

  • Kittler, F. (1995). There is no software. ctheory.net, 10–18.

    Google Scholar 

  • Kittipongvises, S., Chavalparit, O., & Sutthirat, C. (2016). Greenhouse gases and energy intensity of granite rock mining operations in Thailand: A case of industrial rock-construction. Environmental & Climate Technologies, 18(1).

    Google Scholar 

  • Kwon, J. Y., Son, K. S., Jung, J. S., Kim, T. S., Ryu, M. K., Park, K. B., Yoo, B. W., et al. (2008). Bottom-gate gallium indium zinc oxide thin-film transistor array for high-resolution AMOLED display. IEEE Electron Device Letters, 29(12), 1309–1311.

    Google Scholar 

  • Kyle, B. (2012). Recyclers stockpiling millions of pounds of toxic glass from CRT TVs and monitors. Electronics Take Back Coalition. http://www.electronicstakeback.com/2012/11/15/recyclers-stockpiling-millions-of-pounds-of-toxic-glass-from-crt-tvs-and-monitors/. Accessed 29 July 2021.

  • Lacerda, L. D. (1997). Global mercury emissions from gold and silver mining. Water, Air, and Soil Pollution, 97(3), 209–221.

    Google Scholar 

  • Lavigne, M. J., & Michaud, M. J. (2001). Geology of North American Palladium Ltd.’s Roby zone deposit, Lac des Iles. Exploration and Mining Geology, 10(1–2), 1–17.

    Google Scholar 

  • Le Guin, U. K. (1975). “The ones who walk away from Omelas” in Silverberg, Robert (ed.) New Dimensions, vol 3. Nelson Doubleday/SFBC.

    Google Scholar 

  • Losi, M. E., Amrhein, C., & Frankenberger, W. T. (1994). Environmental biochemistry of chromium. Reviews of Environmental Contamination and Toxicology, 91–121.

    Google Scholar 

  • Lottermoser, B. (2007). Mine wastes characterization, treatment, environmental impacts (2nd ed.). Springer.

    Google Scholar 

  • Lu, Q., Xiaohang, X., Liang, L., Zhidong, X., Shang, L., Guo, J., Xiao, D., & Qiu, G. (2019). Barium concentration, phytoavailability, and risk assessment in soil-rice systems from an active barium mining region. Applied Geochemistry, 106, 142–148.

    Google Scholar 

  • Manhart, A., Blepp, M., Fischer, C., Graulich, K., Prakash, S., Priess, R., Schleicher, T., & Tür, M. (2016). Resource efficiency in the ICT sector. Greenpeace, Oeko-Institut eV.

    Google Scholar 

  • Maxwell, R., & Miller, T. (2012). Greening the media. Oxford University Press.

    Google Scholar 

  • Merchant, B. (2017). The one device: The secret history of the iPhone. Hachette.

    Google Scholar 

  • Monteiro, W. A. (2014). The influence of alloy element on magnesium for electronic devices applications–a review. Light Metal Alloys Applications, 12, 229.

    Google Scholar 

  • Mudd, G. M. (2007). Global trends in gold mining: Towards quantifying environmental and resource sustainability. Resources Policy, 32(1–2), 42–56.

    Google Scholar 

  • Mudd, G. M. (2010). Global trends and environmental issues in nickel mining: Sulfides versus laterites. Ore Geology Reviews, 38(1–2), 9–26.

    Google Scholar 

  • Nest, M. (2011). Coltan. Polity.

    Google Scholar 

  • New Jersey Dept of Health and Senior Services. (2001). Hazardous substance fact sheet: Gallium. https://nj.gov/health/eoh/rtkweb/documents/fs/0956.pdf. Accessed 1 Apr 2021.

  • Nickel Institute, The. (2021). Stainless steel: The role of nickel. https://nickelinstitute.org/about-nickel/stainless-steel/. Accessed 1 Apr 2021.

  • Norgate, T. E., Jahanshahi, S., & Rankin, W. J. (2007). Assessing the environmental impact of metal production processes. Journal of Cleaner Production, 15(8–9), 838–848.

    Google Scholar 

  • Oguchi, M., Murakami, S., Sakanakura, H., Kida, A., & Kameya, T. (2011). A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources. Waste Management, 31(9–10), 2150–2160.

    Google Scholar 

  • Olsgard, F., & Hasle, J. R. (1993). Impact of waste from titanium mining on benthic fauna. Journal of Experimental Marine Biology and Ecology, 172(1–2), 185–213.

    Google Scholar 

  • Paraskevas, D., Kellens, K., Van de Voorde, A., Dewulf, W., & Duflou, J. R. (2016). Environmental impact analysis of primary aluminium production at country level. Procedia CIRP, 40, 209–213.

    Google Scholar 

  • Periodic Videos. (2013, May 28). Super expensive metals – Periodic table of videos. YouTube. https://www.youtube.com/watch?v=Fg2WzCzKpYU. Accessed 2 Apr 2021.

  • Pradhan, D., Panda, S., & Sukla, L. B. (2018). Recent advances in indium metallurgy: A review. Mineral Processing and Extractive Metallurgy Review, 39(3), 167–180.

    Google Scholar 

  • Pukas, A. (2016, January 30). What became of the Chilean miners five years on? Express. https://www.express.co.uk/news/world/639433/Chilean-miners-the-33-antontonio-banderas-juan-illanes-San-Jose-mine. Accessed 1 Apr 2021.

  • Rao, M. N., Sultana, R., & Kota, S. H. (2017). Solid and Hazardous Waste Management. Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-809734-2.00006-7

    CrossRef  Google Scholar 

  • ROHS Guide. (2021, April 2). 2021 ROHS compliance guide. Regulations, 10 substances, exemptions. https://www.rohsguide.com/. Accessed 2 Apr 2021.

  • Schulz, K. J., DeYoung, J. H., Seal, R. R., & Bradley, D. C. (Eds.). (2017). Critical mineral resources of the United States: Economic and environmental geology and prospects for future supply. US Geological Survey.

    Google Scholar 

  • Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31(5), 739–753.

    Google Scholar 

  • Taffel, S. (2012). Escaping attention: Digital media hardware, materiality and ecological cost. Culture Machine, 13.

    Google Scholar 

  • Taffel, S. (2015). Towards an ethical electronics? Ecologies of Congolese conflict minerals. Westminster Papers in Communication and Culture, 10(1).

    Google Scholar 

  • Takahashi, K., Sasaki, A., Dodbiba, G., Sadaki, J., Sato, N., & Fujita, T. (2009). Recovering indium from the liquid crystal display of discarded cellular phones by means of chloride-induced vaporization at relatively low temperature. Metallurgical and Materials Transactions A, 40(4), 891–900.

    Google Scholar 

  • T.E., Norgate S., Jahanshahi W.J., Rankin (2007). Assessing the environmental impact of metal production processes. Journal of Cleaner Production 15(8–9) 838-848 10.1016/j.jclepro.2006.06.018

    Google Scholar 

  • U.S. Geological Survey. 2014. Platinum group metals: So many useful properties.

    Google Scholar 

  • U.S. Geological Survey. (2018). 2016 Minerals Yearbook. https://www.usgs.gov/centers/nmic/minerals-yearbook-metals-and-minerals

  • U.S. Geological Survey. (2019). Mineral commodity summaries 2019: U.S. Geological Survey. https://doi.org/10.3133/70202434.

  • U.S. Geological Survey. (2021a). Nickel statistics and information. https://www.usgs.gov/centers/nmic/nickel-statistics-and-information. Accessed 1 Apr 2021.

  • U.S. Geological Survey. (2021b). Copper statistics and information. https://www.usgs.gov/centers/nmic/copper-statistics-and-information. Accessed 1 Apr 2021.

  • USGS. (2016). 2016 Minerals Yearbook [Advance Release]. U.S. Department of the Interior, U.S. Geological Survey.

    Google Scholar 

  • USGS. (2017). “Barite (Barium)”. Chapter D in Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply. Professional Paper 1802–D. U.S. Department of the Interior, U.S. Geological Survey.

    Google Scholar 

  • Wang, L., Tai, P., Jia, C., Li, X., Li, P., & Xiong, X. (2015). Magnesium contamination in soil at a magnesite mining region of Liaoning Province, China. Bulletin of Environmental Contamination and Toxicology, 95(1), 90–96.

    Google Scholar 

  • Wilburn, D. R. (2015, September 22). Lead scrap use and trade patterns in the United States, 1995–2012. US Geological Survey. https://pubs.er.usgs.gov/publication/sir20155114

  • World Health Organization. (2017, March 31). Mercury and health. https://www.who.int/news-room/fact-sheets/detail/mercury-and-health. Accessed 2 Apr 2021.

  • Yang, C., Tan, Q., Zeng, X., Zhang, Y., Wang, Z., & Li, J. (2018). Measuring the sustainability of tin in China. Science of the Total Environment, 635, 1351–1359.

    Google Scholar 

  • Yusof, A. M., Mahat, M. N., Omar, N., & Wood, A. K. H. (2001). Water quality studies in an aquatic environment of disused tin-mining pools and in drinking water. Ecological Engineering, 16(3), 405–414.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. Abraham .

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Abraham, B.J. (2022). The Periodic Table of Torture. In: Digital Games After Climate Change. Palgrave Studies in Media and Environmental Communication. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-91705-0_7

Download citation