Skip to main content

A Kullback-Leibler Divergence-Based Locally Linear Embedding Method: A Novel Parametric Approach for Cluster Analysis

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2021)

Abstract

Numerous problems in machine learning require some type of dimensionality reduction. Unsupervised metric learning deals with the definition of intrinsic and adaptive distance functions of a dataset. Locally linear embedding (LLE) consists of a widely used manifold learning algorithm that applies dimensionality reduction to find a more compact and meaningful representation of the observed data through the capture of the local geometry of the patches. In order to overcome relevant limitations of the LLE approach, we introduce the LLE Kullback-Leibler (LLE-KL) method. Our objective with such a methodological modification is to increase the robustness of the LLE to the presence of noise or outliers in the data. The proposed method employs the KL divergence between patches of the KNN graph instead of the pointwise Euclidean metric. Our empirical results using several real-world datasets indicate that the proposed method delivers a superior clustering allocation compared to state-of-the-art methods of dimensionality reduction-based metric learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donoho, D.L., Grimes, C.: Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad. Sci. 100(10), 5591–5596 (2003)

    Article  MathSciNet  Google Scholar 

  2. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)

    Article  Google Scholar 

  3. Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric Statistical Methods, 3 edn. Wiley, New York (2015)

    Google Scholar 

  4. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  5. Levada, A.L.M.: Parametric PCA for unsupervised metric learning. Pattern Recognit. Lett. 135, 425–430 (2020)

    Article  Google Scholar 

  6. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. arXiv 1802.03426 (2020)

    Google Scholar 

  7. de Ridder, D., Duin, R.P.: Locally linear embedding for classification. Technical report, Delft University of Technology (2002)

    Google Scholar 

  8. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  9. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  10. Saul, L., Roweis, S.: Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 4, 119–155 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Talmon, R., Cohen, I., Gannot, S., Coifman, R.R.: Diffusion maps for signal processing: a deeper look at manifold-learning techniques based on kernels and graphs. IEEE Signal Process. Mag. 30(4), 75–86 (2013)

    Article  Google Scholar 

  12. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  13. Wang, J.: Hessian locally linear embedding. In: Wang, J. (ed.) Geometric Structure of High-Dimensional Data and Dimensionality Reduction, pp. 249–265. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27497-8_13

  14. Wang, J., Wong, R.K., Lee, T.C.: Locally linear embedding with additive noise. Pattern Recognit. Lett. 123, 47–52 (2019)

    Article  Google Scholar 

  15. Xing, X., Du, S., Wang, K.: Robust hessian locally linear embedding techniques for high-dimensional data. Algorithms 9, 36 (2016)

    Article  MathSciNet  Google Scholar 

  16. Zhang, Z.Y., Zha, H.Y.: Principal manifolds and nonlinear dimensionality reduction via tangent space aligment. SIAM J. Sci. Comput. 26(1), 313–338 (2004)

    Article  MathSciNet  Google Scholar 

  17. Zhang, Z., Wang, J.: MLLE: modified locally linear embedding using multiple weights. In: Schölkopf, B., Platt, J.C., Hofmann, T. (eds.) Advances in Neural Information Processing Systems 19, Proceedings of the 20th Conference on Neural Information Processing Systems, Vancouver, British Columbia, pp. 1593–1600 (2006)

    Google Scholar 

Download references

Acknowledgments

This study was partially financed the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Levada, A.L.M., Haddad, M.F.C. (2021). A Kullback-Leibler Divergence-Based Locally Linear Embedding Method: A Novel Parametric Approach for Cluster Analysis. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13073. Springer, Cham. https://doi.org/10.1007/978-3-030-91702-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91702-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91701-2

  • Online ISBN: 978-3-030-91702-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics