Skip to main content

\( ASPIC ^?\) and the Postulates of Non-interference and Crash-Resistance

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13073))

Included in the following conference series:

  • 582 Accesses

Abstract

We introduce an interrogation mark ? in \( ASPIC ^+\) languages as a plausibility operator to enhance any defeasible conclusion does not have the same status as an irrefutable one. The resulting framework, dubbed \( ASPIC ^?\), is tailored to make a distinction between strong inconsistencies and weak inconsistencies. The aim is to avoid the former and to tolerate the latter. This means the extensions obtained from the \( ASPIC ^?\) framework are free of strong conflicts, but tolerant to weak conflicts. Then, in the current study, we show \( ASPIC ^?\) satisfy reasonable properties. In particular, we focus on the property that a conflict between two arguments should not interfere with the acceptability of other unrelated arguments. With this purpose in mind, we prove under which conditions the important principles of Non-interference and Crash-Resistance hold in \( ASPIC ^?\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carnielli, W., Marcos, J.: A taxonomy of C-systems. In: Paraconsistency, pp. 24–117. CRC Press (2002)

    Google Scholar 

  2. Pequeno, T., Buchsbaum, A.: The logic of epistemic inconsistency. In: Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning, pp. 453–460 (1991)

    Google Scholar 

  3. Modgil, S., Prakken, H.: A general account of argumentation with preferences. Artif. Intell. 195, 361–397 (2013)

    Article  MathSciNet  Google Scholar 

  4. Gorogiannis, N., Hunter, A.: Instantiating abstract argumentation with classical logic arguments: postulates and properties. Artif. Intell. 175(9–10), 1479–1497 (2011)

    Article  MathSciNet  Google Scholar 

  5. Caminada, M., Modgil, S., Oren, N.: Preferences and unrestricted rebut. Computational Models of Argument (2014)

    Google Scholar 

  6. Grooters, D., Prakken, H.: Combining paraconsistent logic with argumentation. In: COMMA, pp. 301–312 (2014)

    Google Scholar 

  7. Wu, Y.: Between argument and conclusion-argument-based approaches to discussion, inference and uncertainty. Ph.D. thesis, University of Luxembourg (2012)

    Google Scholar 

  8. Wu, Y., Podlaszewski, M.: Implementing crash-resistance and non-interference in logic-based argumentation. J. Logic Comput. 25(2), 303–333 (2015)

    Article  MathSciNet  Google Scholar 

  9. Rescher, N., Manor, R.: On inference from inconsistent premisses. Theory Decis. 1(2), 179–217 (1970)

    Article  Google Scholar 

  10. Caminada, M.: Semi-stable semantics. OMMA 144, 121–130 (2006)

    MathSciNet  Google Scholar 

  11. Dung, P.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)

    Article  MathSciNet  Google Scholar 

  12. Prakken, H.: An abstract framework for argumentation with structured arguments. Argument Comput. 1(2), 93–124 (2010)

    Article  Google Scholar 

  13. Damásio, C., Moniz Pereira, L.: A survey of paraconsistent semantics for logic programs. In: Besnard, P., Hunter, A. (eds.) Reasoning with Actual and Potential Contradictions. Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 2, pp. 241–320. Springer, Cham (1998). https://doi.org/10.1007/978-94-017-1739-7_8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, R., Alcântara, J. (2021). \( ASPIC ^?\) and the Postulates of Non-interference and Crash-Resistance. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13073. Springer, Cham. https://doi.org/10.1007/978-3-030-91702-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91702-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91701-2

  • Online ISBN: 978-3-030-91702-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics