Abstract
Adding self-loops at each vertex of a graph improves the performance of quantum walks algorithms over loopless algorithms. Many works approach quantum walks to search for a single marked vertex. In this article, we experimentally address several problems related to quantum walk in the hypercube with self-loops to search for multiple marked vertices. We first investigate the quantum walk in the loopless hypercube. We saw that neighbor vertices are also amplified and that approximately 1/2 of the system energy is concentrated in them. We show that the optimal value of l for a single marked vertex is not optimal for multiple marked vertices. We define a new value of \(l = (n/N)\cdot k\) to search multiple marked vertices. Next, we use this new value of l found to analyze the search for multiple marked vertices non-adjacent and show that the probability of success is close to 1. We also use the new value of l found to analyze the search for several marked vertices that are adjacent and show that the probability of success is directly proportional to the density of marked vertices in the neighborhood. We also show that, in the case where neighbors are marked, if there is at least one non-adjacent marked vertex, the probability of success increases to close to 1. The results found show that the self-loop value for the quantum walk in the hypercube to search for several marked vertices is \(l = (n / N) \cdot k \).
Acknowledgments to the Science and Technology Support Foundation of Pernambuco (FACEPE) Brazil, Brazilian National Council for Scientific and Technological Development (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 by their financial support to the development of this research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687 (1993)
Ambainis, A., Bačkurs, A., Nahimovs, N., Ozols, R., Rivosh, A.: Search by quantum walks on two-dimensional grid without amplitude amplification. In: Iwama, K., Kawano, Y., Murao, M. (eds.) TQC 2012. LNCS, vol. 7582, pp. 87–97. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35656-8_7
Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. arXiv preprint quant-ph/0402107 (2004)
Bezerra, G., Lugão, P., Portugal, R.: Quantum walk-based search algorithms with multiple marked vertices. Phys. Rev. A 103(6), 062202 (2021)
de Carvalho, J.H.A., de Souza, L.S., de Paula Neto, F.M., Ferreira, T.A.E.: Impacts of multiple solutions on the Lackadaisical Quantum Walk search algorithm. In: Cerri, R., Prati, R.C. (eds.) BRACIS 2020. LNCS (LNAI), vol. 12319, pp. 122–135. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61377-8_9
Carvalho, J.H.A., Souza, L.S., Paula Neto, F.M., Ferreira, T.A.E.: On applying the lackadaisical quantum walk algorithm to search for multiple solutions on grids. arXiv preprint quant-ph/2106.06274 (2021)
Kempe, J.: Quantum random walks hit exponentially faster. arXiv preprint quant-ph/0205083 (2002)
McMahon, D.: Quantum Computing Explained. Wiley, New York (2007)
Moore, C., Russell, A.: Quantum walks on the hypercube. In: Rolim, J.D.P., Vadhan, S. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 164–178. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45726-7_14
Nahimovs, N.: Lackadaisical Quantum Walks with multiple marked vertices. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOFSEM 2019. LNCS, vol. 11376, pp. 368–378. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10801-4_29
Nahimovs, N., Santos, R.A.M., Khadiev, K.R.: Adjacent vertices can be hard to find by quantum walks. Mosc. Univ. Comput. Math. Cybern. 43(1), 32–39 (2019)
Nahimovs, N., Santos, R.A.: Lackadaisical quantum walks on 2D grids with multiple marked vertices. arXiv preprint arXiv:2104.09955 (2021)
Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. AAPT, Cambridge (2002)
Potoček, V., Gábris, A., Kiss, T., Jex, I.: Optimized quantum random-walk search algorithms on the hypercube. Phys. Rev. A 79(1), 012325 (2009)
Rhodes, M.L., Wong, T.G.: Quantum walk search on the complete bipartite graph. Phys. Rev. A 99(3), 032301 (2019)
Rhodes, M.L., Wong, T.G.: Search on vertex-transitive graphs by lackadaisical quantum walk. Quantum Inf. Process. 19(9), 1–16 (2020)
Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67(5), 052307 (2003)
Singh, J., Singh, M.: Evolution in quantum computing. In: 2016 International Conference System Modeling & Advancement in Research Trends (SMART), pp. 267–270. IEEE (2016)
Souza, L.S., Carvalho, J.H.A., Ferreira, T.A.E.: Quantum walk to train a classical artificial neural network. In: 2019 8th Brazilian Conference on Intelligent Systems (BRACIS), pp. 836–841. IEEE (2019)
Souza, L.S., Carvalho, J.H.A., Ferreira, T.A.E.: Classical artificial neural network training using quantum walks as a search procedure. IEEE Trans. Comput. (2021)
Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012)
Wang, H., Zhou, J., Wu, J., Yi, X.: Adjustable self-loop on discrete-time quantum walk and its application in spatial search. arXiv preprint arXiv:1707.00601 (2017)
Wong, T.G.: Grover search with lackadaisical quantum walks. J. Phys. A: Math. Theor. 48(43), 435304 (2015)
Wong, T.G.: Faster search by lackadaisical quantum walk. Quantum Inf. Process. 17(3), 1–9 (2018)
Yanofsky, N.S., Mannucci, M.A.: Quantum Computing for Computer Scientists. Cambridge University Press, Cambridge (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
de Souza, L.S., de Carvalho, J.H.A., Ferreira, T.A.E. (2021). Lackadaisical Quantum Walk in the Hypercube to Search for Multiple Marked Vertices. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13073. Springer, Cham. https://doi.org/10.1007/978-3-030-91702-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-91702-9_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91701-2
Online ISBN: 978-3-030-91702-9
eBook Packages: Computer ScienceComputer Science (R0)