Skip to main content

Evaluation of Convolutional Neural Networks for COVID-19 Classification on Chest X-Rays

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2021)

Abstract

Early identification of patients with COVID-19 is essential to enable adequate treatment and to reduce the burden on the health system. The gold standard for COVID-19 detection is the use of RT-PCR tests. However, due to the high demand for tests, these can take days or even weeks in some regions of Brazil. Thus, an alternative for detecting COVID-19 is the analysis of Digital Chest X-rays (XR). Changes due to COVID-19 can be detected in XR, even in asymptomatic patients. In this context, models based on deep learning have great potential to be used as support systems for diagnosis or as screening tools. In this paper, we propose the evaluation of convolutional neural networks to identify pneumonia due to COVID-19 in XR. The proposed methodology consists of a preprocessing step of the XR, data augmentation, and classification by the convolutional architectures DenseNet121, InceptionResNetV2, InceptionV3, MovileNetV2, ResNet50, and VGG16 pre-trained with the ImageNet dataset. The obtained results for our methodology demonstrate that the VGG16 architecture presented a superior performance in the classification of XR, with an Accuracy of \(85.11\%\), Sensitivity of \(85.25\%\), Specificity of \(85.16\%\), F1-score of \(85.03\%\), and an AUC of 0.9758.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbas, A., Abdelsamea, M.M., Gaber, M.M.: Classification of covid-19 in chest x-ray images using DeTraC deep convolutional neural network. Appl. Intell. 51(2), 854–864 (2021)

    Article  Google Scholar 

  2. Ai, T., et al.: Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (covid-19) in china: a report of 1014 cases. Radiology 296(2), E32–E40 (2020). https://doi.org/10.1148/radiol.2020200642

    Article  Google Scholar 

  3. Andersen, K.G., Rambaut, A., Lipkin, W.I., Holmes, E.C., Garry, R.F.: The proximal origin of SARS-CoV-2. Nat. Med. 26(4), 450–452 (2020)

    Article  Google Scholar 

  4. Borghesi, A., Maroldi, R.: Covid-19 outbreak in Italy: experimental chest x-ray scoring system for quantifying and monitoring disease progression. La radiologia medica 125(5), 509–513 (2020)

    Article  Google Scholar 

  5. Brasil, M.D.S.: Boletim epidemiológico especial: Doença pelo coronavírus covid-19 (2020). https://saude.gov.br/images/pdf/2020/July/22/Boletim-epidemiologico-COVID-23-final.pdf

  6. Brunese, L., Mercaldo, F., Reginelli, A., Santone, A.: Explainable deep learning for pulmonary disease and coronavirus covid-19 detection from x-rays. Comput. Methods Program. Biomed. 196, 105608 (2020)

    Article  Google Scholar 

  7. Candido, D.S., et al.: Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science 369(6508), 1255–1260 (2020)

    Google Scholar 

  8. CDC COVID-19 Response Team: Severe outcomes among patients with coronavirus disease 2019 (covid-19)-united states, February 12-march 16, 2020. MMWR Morb. Mortal Wkly. Rep 69(12), 343–346 (2020)

    Google Scholar 

  9. Cohen, J.P., et al.: Covid-19 image data collection: Prospective predictions are the future (2020)

    Google Scholar 

  10. De Fauw, J., et al.: Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24(9), 1342–1350 (2018)

    Article  Google Scholar 

  11. Dong, E., Du, H., Gardner, L.: An interactive web-based dashboard to track covid-19 in real time. Lancet. Infect. Dis 20(5), 533–534 (2020)

    Article  Google Scholar 

  12. EPICOVID: Covid-19 no brasil: várias epidemias num só país (2020). http://epidemio-ufpel.org.br/uploads/downloads/276e0cffc2783c68f57b70920fd2acfb.pdf

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Hemdan, E.E.D., Shouman, M.A., Karar, M.E.: Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images. arXiv preprint arXiv:2003.11055 (2020)

  15. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  16. Jatobá, A., Lima, L., Amorim, L., Oliveira, M.: CNN hyperparameter optimization for pulmonary nodule classification. In: Anais do XX Simpósio Brasileiro de Computação Aplicada à Saúde, pp. 25–36. SBC, Porto Alegre, RS, Brasil (2020). https://doi.org/10.5753/sbcas.2020.11499, https://sol.sbc.org.br/index.php/sbcas/article/view/11499

  17. Khan, A.I., Shah, J.L., Bhat, M.M.: Coronet: a deep neural network for detection and diagnosis of covid-19 from chest x-ray images. Comput. Methods Program. Biomed. 196, 105581 (2020)

    Article  Google Scholar 

  18. Lakhani, P., Sundaram, B.: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284(2), 574–582 (2017)

    Article  Google Scholar 

  19. Lee, E.Y., Ng, M.Y., Khong, P.L.: Covid-19 pneumonia: what has CT taught us? Lancet. Infect. Dis 20(4), 384–385 (2020)

    Article  Google Scholar 

  20. Marson, F.A.L.: Covid-19 - 6 million cases worldwide and an overview of the diagnosis in brazil: a tragedy to be announced. Diagn. Microbiol. Infect. Dis. 98(2), 115113 (2020)

    Article  Google Scholar 

  21. Ozturk, T., Talo, M., Yildirim, E.A., Baloglu, U.B., Yildirim, O., Rajendra Acharya, U.: Automated detection of covid-19 cases using deep neural networks with x-ray images. Comput. Biol. Med. 121, 103792 (2020)

    Article  Google Scholar 

  22. Pascarella, G., et al.: Covid-19 diagnosis and management: a comprehensive review. J. Internal Med. 288(2), 192–206 (2020)

    Article  MathSciNet  Google Scholar 

  23. Pooch, E.H.P., Alva, T.A.P., Becker, C.D.L.: A deep learning approach for pulmonary lesion identification in chest radiographs. In: Cerri, R., Prati, R.C. (eds.) BRACIS 2020. LNCS (LNAI), vol. 12319, pp. 197–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61377-8_14

    Chapter  Google Scholar 

  24. Rafael, R.D.M.R., Neto, M., de Carvalho, M.M.B., David, H.M.S.L., Acioli, S., de Araujo Faria, M.G.: Epidemiologia, políticas públicas e pandemia de covid-19: o que esperar no brasil?[epidemiology, public policies and covid-19 pandemics in brazil: what can we expect?][epidemiologia, políticas públicas y la pandémia de covid-19 en brasil: que podemos esperar?]. Revista Enfermagem UERJ 28, 49570 (2020)

    Google Scholar 

  25. Ruuska, S., Hämäläinen, W., Kajava, S., Mughal, M., Matilainen, P., Mononen, J.: Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle. Behav. Process. 148, 56–62 (2018). https://doi.org/10.1016/j.beproc.2018.01.004

    Article  Google Scholar 

  26. Sait, U., et al.: Curated dataset for covid-19 posterior-anterior chest radiography images (x-rays). (September 2020). https://doi.org/10.17632/9xkhgts2s6.3

  27. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  28. Shereen, M.A., Khan, S., Kazmi, A., Bashir, N., Siddique, R.: Covid-19 infection: origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 24, 91–98 (2020)

    Article  Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  30. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  31. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  32. Tang, Y.W., Schmitz, J.E., Persing, D.H., Stratton, C.W.: Laboratory diagnosis of covid-19: current issues and challenges. J. Clin. Microbiol. 58(6) (2020). https://doi.org/10.1128/JCM.00512-20, https://jcm.asm.org/content/58/6/e00512-20

  33. Taylor, L.: Covid-19: Is manaus the final nail in the coffin for natural herd immunity? bmj 372 (2021)

    Google Scholar 

  34. Wong, H.Y.F., et al.: Frequency and distribution of chest radiographic findings in patients positive for covid-19. Radiology 296(2), E72–E78 (2020)

    Article  Google Scholar 

  35. Xie, X., et al.: Chest CT for typical coronavirus disease 2019 (covid-19) pneumonia: Relationship to negative RT-PCR testing. Radiology 296(2), E41–E45 (2020)

    Article  Google Scholar 

  36. Zeiser, F.A., et al.: Segmentation of masses on mammograms using data augmentation and deep learning. J. Digital Imaging 1–11 (2020)

    Google Scholar 

  37. Zhou, P., et al.: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798), 270–273 (2020)

    Article  Google Scholar 

  38. Zuiderveld, K.: Graphics gems iv. In: Heckbert, P.S. (ed.) Graphics Gems, chap. Contrast Limited Adaptive Histogram Equalization, pp. 474–485. Academic Press Professional Inc, San Diego, CA, USA (1994)

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their valuable suggestions. The authors would like to thank the Coordination for the Improvement of Higher Education Personnel - CAPES (Financial Code 001), the National Council for Scientific and Technological Development - CNPq (Grant numbers 309537/2020-7), the Research Support Foundation of the State of Rio Grande do Sul - FAPERGS (Grant numbers 08/2020 PPSUS 21/2551-0000118-6), and NVIDIA GPU Grant Program for your support in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano André da Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeiser, F.A., Costa, C.A.d., Ramos, G.d.O., Bohn, H., Santos, I., Righi, R.d.R. (2021). Evaluation of Convolutional Neural Networks for COVID-19 Classification on Chest X-Rays. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13074. Springer, Cham. https://doi.org/10.1007/978-3-030-91699-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91699-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91698-5

  • Online ISBN: 978-3-030-91699-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics