Abstract
Forced phonetic alignment (FPA) is the task of associating a given phonetic unit to a timestamp interval in the speech waveform. Phoneticians are able mark the boundaries with precision, but as the corpus grows it becomes infeasible to do it by hand. For Brazilian Portuguese (BP) in particular, only three tools appear to perform FPA: EasyAlign, Montreal Forced Aligner (MFA), and UFPAlign. Therefore, this work aims to develop resources based on Kaldi toolkit for UFPAlign, including their release alongside all scripts under open licenses; and to bring forth a comparison to the other two aforementioned aligners. Evaluation took place in terms of the phone boundary metric over a dataset of 385 hand-aligned utterances, and results show that Kaldi-based aligners perform better overall, and that UFPAlign models are more accurate than MFA’s. Furthermore, complex deep-learning-based approaches did not seem to improve performance compared to simpler models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Almeida, J.J., Simões, A.: Projecto natura (2021). https://natura.di.uminho.pt/wiki/doku.php
Atkinson, K.: Gnu aspell (2021). https://aspell.net
Boersma, P., Weenink, D.: Praat: doing phonetics by computer (version 6.1.15) [computer program] (2020). https://www.fon.hum.uva.nl/praat/
Buthpitiya, S., Lane, I., Chong, J.: A parallel implementation of viterbi training for acoustic models using graphics processing units. In: 2012 Innovative Parallel Computing (InPar), pp. 1–10 (2012). https://doi.org/10.1109/InPar.2012.6339590
Dehak, N., Kenny, P.J., Dehak, R., Dumouchel, P., Ouellet, P.: Front-end factor analysis for speaker verification. IEEE Trans. Audio Speech Lang. Process. 19(4), 788–798 (2011). https://doi.org/10.1109/TASL.2010.2064307
Dias, A.L., Batista, C., Santana, D., Neto, N.: Towards a free, forced phonetic aligner for Brazilian Portuguese using kaldi tools. In: Cerri, R., Prati, R.C. (eds.) BRACIS 2020. LNCS (LNAI), vol. 12319, pp. 621–635. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61377-8_44
Gibbon, D., Moore, R., Winski, R.: Sampa computer readable phonetic alphabet (2021). https://www.phon.ucl.ac.uk/home/sampa/
GitHub: Frequencywords (2020). https://github.com/hermitdave/FrequencyWords
Goldman, J.P.: Easyalign: An automatic phonetic alignment tool under praat. In: Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, pp. 3233–3236 (2011)
Guiroy, S., de Cordoba, R., Villegas, A.: Application of the kaldi toolkit for continuous speech recognition using hidden-markov models and deep neural networks. In: IberSPEECH’2016 On-line Proceedings, IberSPEECH 2016, Lisboa, Portugal, pp. 187–196 (2016)
Huang, X., Acero, A., Hon, H.W.: Spoken Language Processing: A Guide to Theory, Algorithm, and System Development, 1st edn. Prentice Hall PTR, Upper Saddle River (2001)
Interinstitutional Center for Computational Linguistics: Cetenfolha dataset (2021). https://www.linguateca.pt/cetenfolha/index_info.html
Jiampojamarn, S., Kondrak, G., Sherif, T.: Applying many-to-many alignments and hidden markov models to letter-to-phoneme conversion. In: Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference, pp. 372–379. Association for Computational Linguistics, Rochester, New York (2007). http://www.aclweb.org/anthology/N/N07/N07-1047
Vesely, K., Ghoshal, A., Burget, L., Povey, D.: Sequence-discriminative training of deep neural networks. In: INTERSPEECH 2013, pp. 2345–2349 (2013)
Ko, T., Peddinti, V., Povey, D., Khudanpur, S.: Audio augmentation for speech recognition. In: Proceedings of Interspeech (2015)
McAuliffe, M., Socolof, M., Mihuc, S., Wagner, M., Sonderegger, M.: Montreal forced aligner: Trainable text-speech alignment using kaldi. In: Proceedings of Interspeech, pp. 498–502 (2017). https://doi.org/10.21437/Interspeech.2017-1386
Moura, R.: Libreoffice’s vero dictionary (2021). https://github.com/LibreOffice/dictionaries/tree/master/pt_BR
Neto, N., Patrick, C., Klautau, A., Trancoso, I.: Free tools and resources for Brazilian Portuguese speech recognition. J. Braz. Comput. Soc. 17(1), 53–68 (2010). https://doi.org/10.1007/s13173-010-0023-1
Neto, N., Rocha, W., Sousa, G.: An open-source rule-based syllabification tool for Brazilian Portuguese. J. Braz. Comput. Soc. 21(1), 1–10 (2015). https://doi.org/10.1186/s13173-014-0021-9
Opensubtitles.org: Opensubtitles (2021). https://www.opensubtitles.org/
Peddinti, V., Wang, Y., Povey, D., Khudanpur, S.: Low latency acoustic modeling using temporal convolution and LSTMs. IEEE Signal Process. Lett. 25(3), 373–377 (2018). https://doi.org/10.1109/LSP.2017.2723507
Peddinti, V., Povey, D., Khudanpur, S.: A time delay neural network architecture for efficient modeling of long temporal contexts. In: Proceedings of Interspeech, pp. 3214–3218 (2015)
Povey, D.: Openslr: open speech and language resources (2021). https://openslr.org/index.html
Povey, D., et al.: Semi-orthogonal low-rank matrix factorization for deep neural networks. In: Proceedings of Interspeech 2018, pp. 3743–3747 (2018). https://doi.org/10.21437/Interspeech.2018-1417
Povey, D., et al.: The kaldi speech recognition toolkit. In: In IEEE 2011 workshop (2011)
Povey, D., et al.: Purely sequence-trained neural networks for ASR based on lattice-free mmi. In: Interspeech 2016, pp. 2751–2755 (2016). https://doi.org/10.21437/Interspeech.2016-595
Povey, D., Zhang, X., Khudanpur, S.: Parallel training of DNNs with natural gradient and parameter averaging (2015)
Schultz, T., Vu, N.T., Schlippe, T.: Globalphone: a multilingual text speech database in 20 languages. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8126–8130 (2013). https://doi.org/10.1109/ICASSP.2013.6639248
Shoup, J.E.: Phonological aspects of speech recognition. Trends Speech Recogn., 125–138 (1980)
Siravenha, A., Neto, N., Macedo, V., Klautau, A.: Uso de regras fonológicas com determinação de vogal tônica para conversão grafema-fone em português brasileiro (2008)
Snyder, D., Garcia-Romero, D., Povey, D., Khudanpur, S.: Deep neural network embeddings for text-independent speaker verification. In: Proceedings of Interspeech 2017, pp. 999–1003 (2017). https://doi.org/10.21437/Interspeech.2017-620
Souza, G., Neto, N.: An automatic phonetic aligner for Brazilian Portuguese with a praat interface. In: Silva, J., Ribeiro, R., Quaresma, P., Adami, A., Branco, A. (eds.) PROPOR 2016. LNCS (LNAI), vol. 9727, pp. 374–384. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41552-9_38
Stolcke, A.: Srilm - an extensivle language modeling toolkit. In: Proceedings of the 7th International Conference on Spoken Language Processing (ICSLP), vol. 2, pp. 901–904 (2002)
Young, S., Ollason, D., Valtchev, V., Woodland, P.: The HTK Book. Cambridge University Engineering Department, version 3.4, Cambridge, UK (2006)
Zhang, X., Trmal, J., Povey, D., Khudanpur, S.: Improving deep neural network acoustic models using generalized maxout networks. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 215–219 (2014). https://doi.org/10.1109/ICASSP.2014.6853589
Acknowledgment
We gratefully acknowledge NVIDIA Corporation with the donation of the Titan Xp GPU used for this research. The authors also would like to thank CAPES for providing scholarships and FAPESPA (grant 001/2020, process 2019/583359) for the financial support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Batista, C., Neto, N. (2021). Experiments on Kaldi-Based Forced Phonetic Alignment for Brazilian Portuguese. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13074. Springer, Cham. https://doi.org/10.1007/978-3-030-91699-2_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-91699-2_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91698-5
Online ISBN: 978-3-030-91699-2
eBook Packages: Computer ScienceComputer Science (R0)