Skip to main content

Experiments on Kaldi-Based Forced Phonetic Alignment for Brazilian Portuguese

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13074))

Included in the following conference series:

Abstract

Forced phonetic alignment (FPA) is the task of associating a given phonetic unit to a timestamp interval in the speech waveform. Phoneticians are able mark the boundaries with precision, but as the corpus grows it becomes infeasible to do it by hand. For Brazilian Portuguese (BP) in particular, only three tools appear to perform FPA: EasyAlign, Montreal Forced Aligner (MFA), and UFPAlign. Therefore, this work aims to develop resources based on Kaldi toolkit for UFPAlign, including their release alongside all scripts under open licenses; and to bring forth a comparison to the other two aforementioned aligners. Evaluation took place in terms of the phone boundary metric over a dataset of 385 hand-aligned utterances, and results show that Kaldi-based aligners perform better overall, and that UFPAlign models are more accurate than MFA’s. Furthermore, complex deep-learning-based approaches did not seem to improve performance compared to simpler models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/falabrasil.

  2. 2.

    http://www.kaldi-asr.org/doc/dnn.html.

  3. 3.

    https://github.com/falabrasil.

References

  1. Almeida, J.J., Simões, A.: Projecto natura (2021). https://natura.di.uminho.pt/wiki/doku.php

  2. Atkinson, K.: Gnu aspell (2021). https://aspell.net

  3. Boersma, P., Weenink, D.: Praat: doing phonetics by computer (version 6.1.15) [computer program] (2020). https://www.fon.hum.uva.nl/praat/

  4. Buthpitiya, S., Lane, I., Chong, J.: A parallel implementation of viterbi training for acoustic models using graphics processing units. In: 2012 Innovative Parallel Computing (InPar), pp. 1–10 (2012). https://doi.org/10.1109/InPar.2012.6339590

  5. Dehak, N., Kenny, P.J., Dehak, R., Dumouchel, P., Ouellet, P.: Front-end factor analysis for speaker verification. IEEE Trans. Audio Speech Lang. Process. 19(4), 788–798 (2011). https://doi.org/10.1109/TASL.2010.2064307

    Article  Google Scholar 

  6. Dias, A.L., Batista, C., Santana, D., Neto, N.: Towards a free, forced phonetic aligner for Brazilian Portuguese using kaldi tools. In: Cerri, R., Prati, R.C. (eds.) BRACIS 2020. LNCS (LNAI), vol. 12319, pp. 621–635. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61377-8_44

    Chapter  Google Scholar 

  7. Gibbon, D., Moore, R., Winski, R.: Sampa computer readable phonetic alphabet (2021). https://www.phon.ucl.ac.uk/home/sampa/

  8. GitHub: Frequencywords (2020). https://github.com/hermitdave/FrequencyWords

  9. Goldman, J.P.: Easyalign: An automatic phonetic alignment tool under praat. In: Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, pp. 3233–3236 (2011)

    Google Scholar 

  10. Guiroy, S., de Cordoba, R., Villegas, A.: Application of the kaldi toolkit for continuous speech recognition using hidden-markov models and deep neural networks. In: IberSPEECH’2016 On-line Proceedings, IberSPEECH 2016, Lisboa, Portugal, pp. 187–196 (2016)

    Google Scholar 

  11. Huang, X., Acero, A., Hon, H.W.: Spoken Language Processing: A Guide to Theory, Algorithm, and System Development, 1st edn. Prentice Hall PTR, Upper Saddle River (2001)

    Google Scholar 

  12. Interinstitutional Center for Computational Linguistics: Cetenfolha dataset (2021). https://www.linguateca.pt/cetenfolha/index_info.html

  13. Jiampojamarn, S., Kondrak, G., Sherif, T.: Applying many-to-many alignments and hidden markov models to letter-to-phoneme conversion. In: Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference, pp. 372–379. Association for Computational Linguistics, Rochester, New York (2007). http://www.aclweb.org/anthology/N/N07/N07-1047

  14. Vesely, K., Ghoshal, A., Burget, L., Povey, D.: Sequence-discriminative training of deep neural networks. In: INTERSPEECH 2013, pp. 2345–2349 (2013)

    Google Scholar 

  15. Ko, T., Peddinti, V., Povey, D., Khudanpur, S.: Audio augmentation for speech recognition. In: Proceedings of Interspeech (2015)

    Google Scholar 

  16. McAuliffe, M., Socolof, M., Mihuc, S., Wagner, M., Sonderegger, M.: Montreal forced aligner: Trainable text-speech alignment using kaldi. In: Proceedings of Interspeech, pp. 498–502 (2017). https://doi.org/10.21437/Interspeech.2017-1386

  17. Moura, R.: Libreoffice’s vero dictionary (2021). https://github.com/LibreOffice/dictionaries/tree/master/pt_BR

  18. Neto, N., Patrick, C., Klautau, A., Trancoso, I.: Free tools and resources for Brazilian Portuguese speech recognition. J. Braz. Comput. Soc. 17(1), 53–68 (2010). https://doi.org/10.1007/s13173-010-0023-1

    Article  Google Scholar 

  19. Neto, N., Rocha, W., Sousa, G.: An open-source rule-based syllabification tool for Brazilian Portuguese. J. Braz. Comput. Soc. 21(1), 1–10 (2015). https://doi.org/10.1186/s13173-014-0021-9

    Article  Google Scholar 

  20. Opensubtitles.org: Opensubtitles (2021). https://www.opensubtitles.org/

  21. Peddinti, V., Wang, Y., Povey, D., Khudanpur, S.: Low latency acoustic modeling using temporal convolution and LSTMs. IEEE Signal Process. Lett. 25(3), 373–377 (2018). https://doi.org/10.1109/LSP.2017.2723507

    Article  Google Scholar 

  22. Peddinti, V., Povey, D., Khudanpur, S.: A time delay neural network architecture for efficient modeling of long temporal contexts. In: Proceedings of Interspeech, pp. 3214–3218 (2015)

    Google Scholar 

  23. Povey, D.: Openslr: open speech and language resources (2021). https://openslr.org/index.html

  24. Povey, D., et al.: Semi-orthogonal low-rank matrix factorization for deep neural networks. In: Proceedings of Interspeech 2018, pp. 3743–3747 (2018). https://doi.org/10.21437/Interspeech.2018-1417

  25. Povey, D., et al.: The kaldi speech recognition toolkit. In: In IEEE 2011 workshop (2011)

    Google Scholar 

  26. Povey, D., et al.: Purely sequence-trained neural networks for ASR based on lattice-free mmi. In: Interspeech 2016, pp. 2751–2755 (2016). https://doi.org/10.21437/Interspeech.2016-595

  27. Povey, D., Zhang, X., Khudanpur, S.: Parallel training of DNNs with natural gradient and parameter averaging (2015)

    Google Scholar 

  28. Schultz, T., Vu, N.T., Schlippe, T.: Globalphone: a multilingual text speech database in 20 languages. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8126–8130 (2013). https://doi.org/10.1109/ICASSP.2013.6639248

  29. Shoup, J.E.: Phonological aspects of speech recognition. Trends Speech Recogn., 125–138 (1980)

    Google Scholar 

  30. Siravenha, A., Neto, N., Macedo, V., Klautau, A.: Uso de regras fonológicas com determinação de vogal tônica para conversão grafema-fone em português brasileiro (2008)

    Google Scholar 

  31. Snyder, D., Garcia-Romero, D., Povey, D., Khudanpur, S.: Deep neural network embeddings for text-independent speaker verification. In: Proceedings of Interspeech 2017, pp. 999–1003 (2017). https://doi.org/10.21437/Interspeech.2017-620

  32. Souza, G., Neto, N.: An automatic phonetic aligner for Brazilian Portuguese with a praat interface. In: Silva, J., Ribeiro, R., Quaresma, P., Adami, A., Branco, A. (eds.) PROPOR 2016. LNCS (LNAI), vol. 9727, pp. 374–384. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41552-9_38

    Chapter  Google Scholar 

  33. Stolcke, A.: Srilm - an extensivle language modeling toolkit. In: Proceedings of the 7th International Conference on Spoken Language Processing (ICSLP), vol. 2, pp. 901–904 (2002)

    Google Scholar 

  34. Young, S., Ollason, D., Valtchev, V., Woodland, P.: The HTK Book. Cambridge University Engineering Department, version 3.4, Cambridge, UK (2006)

    Google Scholar 

  35. Zhang, X., Trmal, J., Povey, D., Khudanpur, S.: Improving deep neural network acoustic models using generalized maxout networks. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 215–219 (2014). https://doi.org/10.1109/ICASSP.2014.6853589

Download references

Acknowledgment

We gratefully acknowledge NVIDIA Corporation with the donation of the Titan Xp GPU used for this research. The authors also would like to thank CAPES for providing scholarships and FAPESPA (grant 001/2020, process 2019/583359) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassio Batista .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Batista, C., Neto, N. (2021). Experiments on Kaldi-Based Forced Phonetic Alignment for Brazilian Portuguese. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13074. Springer, Cham. https://doi.org/10.1007/978-3-030-91699-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91699-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91698-5

  • Online ISBN: 978-3-030-91699-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics