Skip to main content

Finding Local Explanations Through Masking Models

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2021 (IDEAL 2021)

Abstract

Among the XAI (eXplainable Artificial Intelligence) techniques, local explanations are witnessing increasing interest due to the user need to trust specific black-box decisions. In this work we explore a novel local explanation approach appliable to any kind of classifier based on generating masking models. The idea underlying the method is to learn a transformation of the input leading to a novel instance able to confuse the black-box and simultaneously minimizing dissimilarity with the instance to explain. The transformed instance then highlights the parts of the input that need to be (de-)emphasized and acts as an explanation for the local decision. We clarify differences with existing local explanation methods and experiment our approach on different image classification scenarios, pointing out advantages and peculiarities of the proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altmann, A., Toloşi, L., Sander, O., Lengauer, T.: Permutation importance: a corrected feature importance measure. Bioinformatics 26(10), 1340–1347 (2010)

    Article  Google Scholar 

  2. Dabkowski, P., Gal, Y.: Real time image saliency for black box classifiers (2017). arXiv preprint arXiv:1705.07857

  3. Du, M., Liu, N., Song, Q., Hu, X.: Towards explanation of dnn-based prediction with guided feature inversion. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1358–1367 (2018)

    Google Scholar 

  4. Du, M., Liu, N., Yang, F., Ji, S., Hu, X.: On attribution of recurrent neural network predictions via additive decomposition. In: The World Wide Web Conference, pp. 383–393 (2019)

    Google Scholar 

  5. LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database (2010)

    Google Scholar 

  6. Lundberg, S., Lee, S.I.: A unified approach to interpreting model predictions (2017). arXiv preprint arXiv:1705.07874

  7. Montavon, G., Binder, A., Lapuschkin, S., Samek, W., Müller, K.R.: Layer-wise relevance propagation: an overview. In: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 193–209 (2019)

    Google Scholar 

  8. Qi, Z., Khorram, S., Li, F.: Visualizing deep networks by optimizing with integrated gradients. In: CVPR Workshops, vol. 2 (2019)

    Google Scholar 

  9. Rajaraman, S., et al.: Understanding the learned behavior of customized convolutional neural networks toward malaria parasite detection in thin blood smear images. J. Med. Imaging 5(3), 034501 (2018)

    Article  Google Scholar 

  10. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  11. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic explanations. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  12. Samek, W., Montavon, G., Lapuschkin, S., Anders, C.J., Müller, K.R.: Explaining deep neural networks and beyond: a review of methods and applications. Proc. IEEE 109(3), 247–278 (2021)

    Article  Google Scholar 

  13. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: Visualising image classification models and saliency maps (2013). arXiv preprint arXiv:1312.6034

  14. Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: Smoothgrad: removing noise by adding noise (2017)

    Google Scholar 

  15. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms (2017)

    Google Scholar 

  16. Zeiler, Matthew D.., Fergus, Rob: Visualizing and understanding convolutional networks. In: Fleet, David, Pajdla, Tomas, Schiele, Bernt, Tuytelaars, Tinne (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Nisticò .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Angiulli, F., Fassetti, F., Nisticò, S. (2021). Finding Local Explanations Through Masking Models. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2021. IDEAL 2021. Lecture Notes in Computer Science(), vol 13113. Springer, Cham. https://doi.org/10.1007/978-3-030-91608-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91608-4_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91607-7

  • Online ISBN: 978-3-030-91608-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics