Skip to main content

Recent Advances in Circular Bioeconomy

  • Chapter
  • First Online:
Book cover Waste-to-Energy

Abstract

The progressively growing patterns of global population, urbanization, industrialization, environmental degradation and associated depletion of natural reserves are paving the way towards the conservation and recycling of resources. Contrary to the traditional linear economy, based on procurement-production-usage-disposal, the novel circular economy model corresponds to sustainable flow of materials, products and energy, in terms of growth-manufacturing-utilization-restoration. Likewise, bioeconomy deals with the production and subsequent conversion of renewable biological residues into bioenergy and value-added products. Accordingly, circular bioeconomy constitutes the integration of circular economy and bioeconomy for the sustainable and cascading use of bioresources into reusable/recyclable bio-based products. In addition to biomass, the organic waste containing plentiful amounts of proteins, carbohydrates, lipids and other essential substances can be efficiently converted into useful and eco-friendly products. Therefore, circular bioeconomy represents a promising and effective strategy for resolving the global issues of food scarcity, constant dependence on fossil fuels, waste management, energy deficit, limited employment opportunities and environmental pollution. Nevertheless, limitations in supply chain, technological advancement, legislative measures and consumer compliance necessitate thorough consideration for the implementation of circular bioeconomy approach in various sectors of socioeconomic significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd Manaf L, Samah MA, Zukki NI (2009) Municipal solid waste management in Malaysia: practices and challenges. Waste Manag 29(11):2902–2906

    Article  Google Scholar 

  • Algapani DE, Qiao W, Ricci M, Bianchi D, Wandera SM, Adani F, Dong R (2019) Bio-hydrogen and bio-methane production from food waste in a two-stage anaerobic digestion process with digestate recirculation. Renew Energy 130:1108–1115

    Article  CAS  Google Scholar 

  • Al-Khatib IA, Arafat HA, Daoud R, Shwahneh H (2009) Enhanced solid waste management by understanding the effects of gender, income, marital status, and religious convictions on attitudes and practices related to street littering in Nablus-Palestinian territory. Waste Manag 29(1):449–455

    Article  Google Scholar 

  • Amulya K, Dahiya S, Mohan SV (2016) Building a bio-based economy through waste remediation: innovation towards sustainable future. In: Prasad MNV (ed) Bioremediation and bioeconomy. Elsevier, pp 497–521

    Chapter  Google Scholar 

  • Amulya K, Jukuri S, Mohan SV (2015) Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: process integration for up-scaling. Bioresour Technol 188:231–239

    Article  CAS  Google Scholar 

  • Arun KB, Madhavan A, Sindhu R, Binod P, Pandey A, Reshmy R, Sirohi R (2020) Remodeling agro-industrial and food wastes into value-added bioactives and biopolymers. Ind Crops Prod 154:112621

    Google Scholar 

  • Ayyachamy M, Cliffe FE, Coyne JM, Collier J, Tuohy MG (2013) Lignin: untapped biopolymers in biomass conversion technologies. Biomass Convers Bior 3(3):255–269

    Article  Google Scholar 

  • Ballesteros LF, Michelin M, Vicente AA, Teixeira JA, Cerqueira MA (2018) Use of lignocellulosic materials in bio-based packaging. In: Navard P (ed) Briefs in molecular science—biobased polymers. Springer, Cham, pp 65–85

    Google Scholar 

  • Bayer IS, Guzman-Puyol S, Heredia-Guerrero JA, Ceseracciu L, Pignatelli F, Ruffilli R, Cingolani R, Athanassiou A (2014) Direct transformation of edible vegetable waste into bioplastics. Macromolecules 47(15):5135–5143

    Article  CAS  Google Scholar 

  • Bilal M, Rasheed T, Nabeel F, Iqbal HM (2020) Bionanocomposites from biofibers and biopolymers. In: Khan A, Rangappa SM, Siengchin S, Asiri AM (eds) Biofibers and biopolymers for biocomposites. Springer, Cham, pp 135–157

    Chapter  Google Scholar 

  • Bocken NM, Olivetti EA, Cullen JM, Potting J, Lifset R (2017) Taking the circularity to the next level: a special issue on the circular economy. J Ind Ecol 21:476–482

    Article  Google Scholar 

  • Brandao AS, Gonçalves A, Santos JM (2021) Circular bioeconomy strategies: from scientific research to commercially viable products. J Clean Prod 295:126407

    Google Scholar 

  • Bringezu S, Schutz H, Arnold K, Merten F, Kabasci S, Borelbach P, Michels C, Reinhardt GA, Rettenmaier N (2009) Global implications of biomass and biofuel use in Germany—recent trends and future scenarios for domestic and foreign agricultural land use and resulting GHG emissions. J Clean Prod 17:S57–S68

    Article  Google Scholar 

  • Brown A, Le Feuvre P (2017) Technology roadmap: delivering sustainable bioenergy. International Energy Agency, Paris, France, p 94

    Google Scholar 

  • Brunner PH, Rechberger H (2015) Waste to energy—key element for sustainable waste management. Waste Manag 37:3–12

    Article  CAS  Google Scholar 

  • Cardoen D, Joshi P, Diels L, Sarma PM, Pant D (2015) Agriculture biomass in India: Part 1. Estimation and characterization. Resour Conserv Recycl 102:39–48

    Article  Google Scholar 

  • Carus M (2017) Biobased economy and climate change—important links, pitfalls, and opportunities. Ind Biotechnol 13(2):41–51

    Article  Google Scholar 

  • Carus M, Dammer L (2018) The circular bioeconomy—concepts, opportunities, and limitations. Ind Biotechnol 14(2):83–91

    Article  Google Scholar 

  • Chandrasekhar K, Kumar S, Lee BD, Kim SH (2020) Waste based hydrogen production for circular bioeconomy: current status and future directions. Bioresour Technol 302:122920

    Google Scholar 

  • Cheng F, Small AA, Colosi LM (2021) The levelized cost of negative CO2 emissions from thermochemical conversion of biomass coupled with carbon capture and storage. Energy Convers Manag 237:114115

    Google Scholar 

  • Choi HI, Lee JS, Choi JW, Shin YS, Sung YJ, Hong ME, Kwak HS, Kim CY, Sim SJ (2019) Performance and potential appraisal of various microalgae as direct combustion fuel. Bioresour Technol 273:341–349

    Article  CAS  Google Scholar 

  • Chokshi K, Pancha I, Ghosh A, Mishra S (2016) Microalgal biomass generation by phycoremediation of dairy industry wastewater: an integrated approach towards sustainable biofuel production. Bioresour Technol 221:455–460

    Article  CAS  Google Scholar 

  • Churkina G, Organschi A, Reyer CP, Ruff A, Vinke K, Liu Z, Reck BK, Graedel TE, Schellnhuber HJ (2020) Buildings as a global carbon sink. Nat Sustain 3(4):269–276

    Article  Google Scholar 

  • Ciulli F, Kolk A, Boe-Lillegraven S (2020) Circularity brokers: digital platform organizations and waste recovery in food supply chains. J Bus Ethics 167(2):299–331

    Article  Google Scholar 

  • Creutzig F, Ravindranath NH, Berndes G, Bolwig S, Bright R, Cherubini F, Chum H, Corbera E, Delucchi M, Faaij A, Fargione J (2015) Bioenergy and climate change mitigation: an assessment. Glob Change Biol Bioenergy 7(5):916–944

    Article  CAS  Google Scholar 

  • Crini G, Lichtfouse E, Chanet G, Morin-Crini N (2020) Applications of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: a review. Environ Chem Lett 18:1451–1476

    Article  CAS  Google Scholar 

  • Cuetos MJ, Gomez X, Otero M, Morán A (2008) Anaerobic digestion of solid slaughterhouse waste (SHW) at laboratory scale: influence of co-digestion with the organic fraction of municipal solid waste (OFMSW). Biochem Eng J 40(1):99–106

    Article  CAS  Google Scholar 

  • Dahiya S, Kumar AN, Sravan JS, Chatterjee S, Sarkar O, Mohan SV (2018) Food waste biorefinery: sustainable strategy for circular bioeconomy. Bioresour Technol 248:2–12

    Article  CAS  Google Scholar 

  • Dale BE (2017) Feeding a sustainable chemical industry: do we have the bioproducts cart before the feedstocks horse? Faraday Discuss 202:11–30

    Article  CAS  Google Scholar 

  • de Assis CA, Gonzalez R, Kelley S, Jameel H, Bilek T, Daystar J, Handfield R, Golden J, Prestemon J, Singh D (2017) Risk management consideration in the bioeconomy. Biofuel Bioprod Biorefin 11(3):549–566

    Article  Google Scholar 

  • de Besi M, McCormick K (2015) Towards a bioeconomy in Europe: national, regional and industrial strategies. Sustainability 7(8):10461–10478

    Article  Google Scholar 

  • de Schouwer F, Claes L, Vandekerkhove A, Verduyckt J, De Vos DE (2019) Protein-rich biomass waste as a resource for future biorefineries: state of the art, challenges, and opportunities. Chemsuschem 12(7):1272–1303

    Article  Google Scholar 

  • Devi VC, Mothil S, Raam RS, Senthilkumar K (2020) Thermochemical conversion and valorization of woody lignocellulosic biomass in hydrothermal media. In: Kumar RP, Bharathiraja B, Kataki R, Moholkar VS (eds) Biomass valorization to bioenergy. Springer, Singapore, pp 45–63

    Google Scholar 

  • Eriksson D, Kershen D, Nepomuceno A, Pogson BJ, Prieto H, Purnhagen K, Smyth S, Wesseler J, Whelan A (2019) A comparison of the EU regulatory approach to directed mutagenesis with that of other jurisdictions, consequences for international trade and potential steps forward. New Phytol 222(4):1673–1684

    Article  Google Scholar 

  • European Commission (2012) Bioeconomy strategy: innovating for sustainable growth: a bioeconomy for Europe. European Commission, Brussels, Belgium

    Google Scholar 

  • European Commission (2016) Mapping of EU member states’/regions’ research and innovation plans and strategies for smart specialization (RIS3) on bioeconomy

    Google Scholar 

  • Evans J (2019) Building with biosolids. Biofuels Bioprod Biorefin 13:434

    Google Scholar 

  • Fehrenbach H, Köppen S, Kauertz B, Detzel A, Wellenreuther F, Brietmayer E, Essel R, Carus M, Kay S, Wern B (2017) Biomass cascades: increasing resource efficiency by cascading use of biomass—from theory to practice. German Environmental Agency, Heidelberg, Germany, p 29

    Google Scholar 

  • Feleke S, Cole SM, Sekabira H, Djouaka R, Manyong V (2021) Circular bioeconomy research for development in sub-Saharan Africa: innovations, gaps, and actions. Sustainability 13(4):1926

    Google Scholar 

  • Ferreira FV, Pinheiro IF, de Souza SF, Mei LH, Lona LM (2019) Polymer composites reinforced with natural fibers and nanocellulose in the automotive industry: a short review. J Compos Sci 3(2):51

    Article  CAS  Google Scholar 

  • Gajula S, Antonyraj CA, Odaneth AA, Srinivasan K (2019) A consolidated road map for economically gainful efficient utilization of agro-wastes for eco-friendly products. Biofuel Bioprod Biorefin 13(4):899–911

    Article  CAS  Google Scholar 

  • Gajula S, Reddy CR (2021) More sustainable biomass production and biorefining to boost the bioeconomy. Biofuels Bioprod Biorefin

    Google Scholar 

  • Gregg JS, Jürgens J, Happel MK, Strøm-Andersen N, Tanner AN, Bolwig S, Klitkou A (2020) Valorization of bio-residuals in the food and forestry sectors in support of a circular bioeconomy: a review. J Clean Prod 11:122093

    Google Scholar 

  • Gundekari S, Mitra J, Varkolu M (2020) Classification, characterization, and properties of edible and non-edible biomass feedstocks. In: Hussain CM, Sudarsanam P (eds) Advanced functional solid catalysts for biomass valorization. Elsevier, Oxford, pp 89–120

    Chapter  Google Scholar 

  • Gupta N, Yadav KK, Kumar V (2015) A review on current status of municipal solid waste management in India. J Environ Sci 37:206–217

    Article  Google Scholar 

  • Hajinajaf N, Mehrabadi A, Tavakoli O (2021) Practical strategies to improve harvestable biomass energy yield in microalgal culture: a review. Biomass Bioenergy 145:105941

    Google Scholar 

  • Heimann T (2019) Bioeconomy and SDGs: does the bioeconomy support the achievement of the SDGs? Earth’s Future 7(1):43–57

    Article  Google Scholar 

  • Henry RK, Yongsheng Z, Jun D (2006) Municipal solid waste management challenges in developing countries—Kenyan case study. Waste Manag 26(1):92–100

    Article  Google Scholar 

  • Hetemaki L, Hanewinkel M, Muys B, Ollikainen M, Palahí M, Trasobares A, Aho E, Ruiz CN, Persson G, Potoćnik J (2017) Leading the way to a European circular bioeconomy strategy, vol 5. European Forest Institute

    Google Scholar 

  • Hoornweg D, Bhada-Tata P (2012) What a waste: a global review of solid waste management. Urban Development Series Knowledge Papers, World Bank

    Google Scholar 

  • House TW (2012) National bioeconomy blueprint. Ind Biotechnol 8(3):97–102

    Article  Google Scholar 

  • Iniguez ME, Conesa JA, Fullana A (2016) Marine debris occurrence and treatment: a review. Renew Sustain Energy Rev 64:394–402

    Article  Google Scholar 

  • Ioannidou SM, Pateraki C, Ladakis D, Papapostolou H, Tsakona M, Vlysidis A, Kookos IK, Koutinas A (2020) Sustainable production of bio-based chemicals and polymers via integrated biomass refining and bioprocessing in a circular bioeconomy context. Bioresour Technol 307:123093

    Google Scholar 

  • Ismail IM, Nizami AS (2016) Waste-based biorefineries in developing countries: an imperative need of time. In: Canadian Society for Civil Engineering: 14th international environmental specialty conference, London, Ontario, Canada, pp 1–4

    Google Scholar 

  • Issa I, Delbrück S, Hamm U (2019) Bioeconomy from experts’ perspectives—results of a global expert survey. PLoS ONE 14(5):e0215917

    Google Scholar 

  • Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Sci 347(6223):768–771

    Article  CAS  Google Scholar 

  • Jayathilakan K, Sultana K, Radhakrishna K, Bawa AS (2012) Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. J Food Sci Technol 49(3):278–293

    Article  CAS  Google Scholar 

  • John VM, Zordan SE (2001) Research & development methodology for recycling residues as building materials—a proposal. Waste Manag 21(3):213–219

    Google Scholar 

  • Joint Research Centre (2017) Jobs and Ministry of Economy and competitiveness turnover in the European Union Bioeconomy

    Google Scholar 

  • Jordahl JL, Foster L, Schnoor JL, Alvarez PJ (1997) Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation. Environ Toxicol Chem: Int J 16(6):1318–1321

    Article  CAS  Google Scholar 

  • Julio R, Albet J, Vialle C, Vaca-Garcia C, Sablayrolles C (2017) Sustainable design of biorefinery processes: existing practices and new methodology. Biofuels Bioprod Biorefin 11(2):373–395

    Article  CAS  Google Scholar 

  • Kalmykova Y, Sadagopa M, Rosado L (2018) Circular economy—from review of theories and practices to development of implementation tools. Resour Conserv Recycl 135:190–201

    Article  Google Scholar 

  • Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100:2562–2568

    Article  CAS  Google Scholar 

  • Kircher M (2012) The transition to a bio-economy: national perspectives. Biofuels Bioprod Biorefin 6:240–245

    Article  CAS  Google Scholar 

  • Kronenberg J, Winkler R (2009) Wasted waste: an evolutionary perspective on industrial by-products. Ecol Econ 68:3026–3033

    Article  Google Scholar 

  • Lane DJ, Ashman PJ, Zevenhoven M, Hupa M, van Eyk PJ, de Nys R, Karlström O, Lewis DM (2014) Combustion behavior of algal biomass: carbon release, nitrogen release, and char reactivity. Energy Fuel 28(1):41–51

    Article  CAS  Google Scholar 

  • Lee JK, Patel SK, Sung BH, Kalia VC (2020) Biomolecules from municipal and food industry wastes: an overview. Bioresour Technol 298:122346

    Google Scholar 

  • Leskinen P, Cardellini G, González-García S, Hurmekoski E, Sathre R, Seppala J, Smyth C, Stern T, Verkerk PJ (2018) Substitution effects of wood-based products in climate change mitigation: from science to policy 7. European Forest Institute, Joensuu

    Google Scholar 

  • Lin CS, Pfaltzgraff LA, Herrero-Davila L, Mubofu EB, Abderrahim S, Clark JH, Koutinas AA, Kopsahelis N, Stamatelatou K, Dickson F, Thankappan S (2013) Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ Sci 6(2):426–464

    Google Scholar 

  • Liu Y, Dong L, Guo D, Xu Y, Liu J (2016) Pollution status and environmental sound management (ESM) trends on typical general industrial solid waste. Procedia Environ Sci 31:615–620

    Article  Google Scholar 

  • Lorentz JF, Calijuri ML, Assemany PP, Alves WS, Pereira OG (2020) Microalgal biomass as a biofertilizer for pasture cultivation: plant productivity and chemical composition. J Clean Prod 276:124130

    Google Scholar 

  • MacArthur FE (2013) Towards the circular economy, vol 1: an economic and business rationale for an accelerated transition. Ellen McArthur

    Google Scholar 

  • Maina S, Kachrimanidou V, Koutinas A (2017) From waste to biobased products: a roadmap towards a circular and sustainable bioeconomy. Curr Opin Green Sustain Chem 8:18–23

    Article  Google Scholar 

  • Mardani A, Streimikiene D, Cavallaro F, Loganathan N, Khoshnoudi M (2019) Carbon dioxide (CO2) emissions and economic growth: a systematic review of two decades of research from 1995 to 2017. Sci Total Environ 649:31–49

    Article  CAS  Google Scholar 

  • McCormick K, Kautto N (2013) The bioeconomy in Europe: an overview. Sustainability 5(6):2589–2608

    Article  Google Scholar 

  • McElroy CR, Attard TM, Farmer TJ, Gaczynski A, Thornthwaite D, Clark JH, Hunt AJ (2018) Valorization of spruce needle waste via supercritical extraction of waxes and facile isolation of nonacosan-10-ol. J Clean Prod 171:557–566

    Article  CAS  Google Scholar 

  • Mettu S, Halder P, Patel S, Kundu S, Shah K, Yao S, Hathi Z, Ong KL, Athukoralalage S, Choudhury NR, Dutta NK (2020) Valorisation of agricultural waste residues. In: Lin CSK, Kaur G, Li C, YangJohn X (eds) Waste valorisation: waste streams in a circular economy, Wiley, pp 51–85

    Google Scholar 

  • Miandad R, Rehan M, Ouda OKM, Khan MZ, Shahzad K, Ismail IMI, Nizami AS (2017) Waste-to-hydrogen energy in Saudi Arabia: challenges and perspectives. In: Singh A, Rathore D (eds) Biohydrogen production: sustainability of current technology and future perspective. Springer, India, pp 237–252

    Google Scholar 

  • Milea A (2009) Waste as a social dilemma: Issues of social and environmental justice and the role of residents in municipal solid waste management, Delhi, India. Master's thesis, Lund University, Lund, Sweden

    Google Scholar 

  • Modak P, Wilson DC, Velis C (2015) Waste management: global status. In: Wilson DC, Rodic L, Modak P, Soos R, Carpintero A, Velis K, Iyer M, Simonett O (eds) Global waste management outlook. UNEP, Athens, Greece, pp 51–79

    Google Scholar 

  • Mohan SV, Butti SK, Amulya K, Dahiya S, Modestra JA (2016a) Waste biorefinery: a new paradigm for a sustainable bioelectro economy. Trends Biotechnol 34(11):852–855

    Article  CAS  Google Scholar 

  • Mohan SV, Dahiya S, Amulya K, Katakojwala R, Vanitha TK (2019) Can circular bioeconomy be fueled by waste biorefineries—a closer look. Bioresour Technol Rep 7:100277

    Google Scholar 

  • Mohan SV, Nikhil GN, Chiranjeevi P, Reddy CN, Rohit MV, Kumar AN, Sarkar O (2016b) Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour Technol 215:2–12

    Article  Google Scholar 

  • Mosler HJ, Tamas A, Tobias R, Rodríguez TC, Miranda OG (2008) Deriving interventions on the basis of factors influencing behavioral intentions for waste recycling, composting, and reuse in Cuba. Environ Behav 40(4):522–544

    Article  Google Scholar 

  • Nagarajan D, Lee DJ, Chang JS (2021) Circular bioeconomy: an introduction. In: Pandey A, Tyagi RD, Varjani S (eds) Biomass, biofuels, biochemicals, Elsevier, pp 3–23

    Google Scholar 

  • Nizami AS, Mohanakrishna G, Mishra U, Pant D (2016a) Trends and sustainability criteria for the liquid biofuels. In: Singh RS, Pandey A, Gnansounou E (eds) Biofuels: production and future perspectives. CRC Press, New York, pp 59–95

    Google Scholar 

  • Nizami AS, Ouda OK, Rehan M, El-Maghraby AM, Gardy J, Hassanpour A, Kumar S, Ismail IM (2016b) The potential of Saudi Arabian natural zeolites in energy recovery technologies. Energy 108:162–171

    Article  CAS  Google Scholar 

  • Nogueira LA, Souza GM, Cortez LA, de Brito Cruz CH (2020) Biofuels for Transport. In: Letcher TM (ed) Future energy: improved, sustainable and clean options for our planet, Elsevier, pp 173–197

    Google Scholar 

  • OECD (2009) The bioeconomy to 2030: designing a policy agenda. OECD Publishing, Paris

    Book  Google Scholar 

  • Olsson O, Roos A, Guisson R, Bruce L, Lamers P, Hektor B, Thrän D, Hartley D, Ponitka J, Hildebrandt J (2018) Time to tear down the pyramids? A critique of cascading hierarchies as a policy tool. Wiley Interdiscip Rev Energy Environ 7(2):e279

    Google Scholar 

  • Ouda OK, Raza SA, Nizami AS, Rehan M, Al-Waked R, Korres NE (2016) Waste to energy potential: a case study of Saudi Arabia. Renew Sustain Energy Rev 61:328–3240

    Article  Google Scholar 

  • Pande M, Bhaskarwar AN (2012) Biomass conversion to energy. In: Baskar C, Baskar S, Dhillon RS (eds) Biomass conversion: the interface of biotechnology, chemistry and materials science. Springer, Berlin Heidelberg, pp 1–90

    Google Scholar 

  • Pang S (2019) Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnol Adv 37(4):589–597

    Article  CAS  Google Scholar 

  • Patel AK, Dixit P, Pandey A, Singhania RR (2020) Promising enzymes for biomass processing. In: Singh SP, Pandey A, Singhania RR, Larroche C, Li Z (eds) Biomass, biofuels, biochemicals. Elsevier, Oxford, pp 245–271

    Google Scholar 

  • Philp J, Winickoff D (2018) Realising the circular bioeconomy, OECD science, technology and industry policy papers, No. 60. OECD Publishing, Paris

    Google Scholar 

  • Posada JA, Patel AD, Roes L, Blok K, Faaij AP, Patel MK (2013) Potential of bioethanol as a chemical building block for biorefineries: preliminary sustainability assessment of 12 bioethanol-based products. Bioresour Technol 135:490–499

    Article  CAS  Google Scholar 

  • Purnhagen, K.; Wesseler, J (2020) EU regulation of new plant breeding technologies and their possible economic implications for the EU and beyond. Appl Econ Perspect Policy

    Google Scholar 

  • Ramesh Kumar S, Shaiju P, O’Connor KE (2020) Bio-based and biodegradable polymers—state-of-the-art, challenges and emerging trends. Curr Opin Green Sustain Chem 21:75–81

    Article  Google Scholar 

  • Rasheed T, Anwar MT, Ahmad N, Sher F, Khan SU, Ahmad A, Khan R, Wazeer I (2021) Valorisation and emerging perspective of biomass based waste-to-energy technologies and their socio-environmental impact: a review. J Environ Manag 287:112257

    Google Scholar 

  • Rathi S (2006) Alternative approaches for better municipal solid waste management in Mumbai, India. Waste Manag 26(10):1192–1200

    Article  Google Scholar 

  • Rathore D, Nizami AS, Pant D, Singh A (2016) Key issues in estimating energy and greenhouse gas savings of biofuels: challenges and perspectives. Biofuel Res J 3(2):380–393

    Article  CAS  Google Scholar 

  • Rozin P (2005) The meaning of food in our lives: a cross-cultural perspective on eating and well-being. J Nutr Educ Behav 37:S107–S112

    Article  Google Scholar 

  • Sadef Y, Nizami AS, Batool SA, Chaudary MN, Ouda OK, Asam ZU, Habib K, Rehan M, Demirbas A (2016) Waste-to-energy and recycling value for developing integrated solid waste management plan in Lahore. Energy Sources Part B 11(7):569–579

    Article  Google Scholar 

  • Sanneh ES, Hu AH, Chang YM, Sanyang E (2011) Introduction of a recycling system for sustainable municipal solid waste management: a case study on the greater Banjul area of the Gambia. Environ Dev Sustain 13(6):1065–1080

    Article  Google Scholar 

  • Sari SK, Trikurniadewi N, Ibrahim SN, Khiftiyah AM, Abidin AZ, Nurhariyati T (2020) Bioconversion of agricultural waste hydrolysate from lignocellulolytic mold into biosurfactant by Achromobacter sp. BP (1) 5. Biocatal Agric Biotechnol 24:101534

    Google Scholar 

  • Sarma SJ, Pachapur V, Brar SK, Le Bihan Y, Buelna G (2015) Hydrogen biorefinery: potential utilization of the liquid waste from fermentative hydrogen production. Renew Sustain Energy Rev 50:942–951

    Article  CAS  Google Scholar 

  • Schmitt CC, Moreira R, Neves RC, Richter D, Funke A, Raffelt K, Grunwaldt JD, Dahmen N (2020) From agriculture residue to upgraded product: The thermochemical conversion of sugarcane bagasse for fuel and chemical products. Fuel Process Technol 197:106199

    Google Scholar 

  • Shahzad K, Nizami AS, Sagir M, Rehan M, Maier S, Khan MZ, Ouda OK, Ismail IM, BaFail AO (2017) Biodiesel production potential from fat fraction of municipal waste in Makkah. PLoS ONE 12(2):e0171297

    Google Scholar 

  • Sharma P, Kumar Gaur V, Kim SH, Pandey A (2020) Microbial strategies for bio-transforming food waste into resources. Bioresour Technol 299:122580

    Google Scholar 

  • Sherwood J (2020) The significance of biomass in a circular economy. Bioresour Technol 300:122755

    Google Scholar 

  • Soetaert W (2009) Defining biorefineries and different concepts. In: Presentation in BioreFuture 2009 conference, Brussels, Belgium

    Google Scholar 

  • Spierling S, Knüpffer E, Behnsen H, Mudersbach M, Krieg H, Springer S, Albrecht S, Herrmann C, Endres HJ (2018) Bio-based plastics—a review of environmental, social and economic impact assessments. J Clean Prod 185:476–491

    Article  Google Scholar 

  • Stegmann P, Londo M, Junginger M (2020) The circular bioeconomy: its elements and role in European bioeconomy clusters. Resour Conserv Recycl 6:100029

    Google Scholar 

  • Stenmarck A, Jensen C, Quested T, Moates G, Buksti M, Cseh B, Ostergren K (2016) Estimates of European food waste levels. IVL Swedish Environmental Research Institute

    Google Scholar 

  • Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B (2010) Future prospects of microalgal biofuel production systems. Trends Plant Sci 15(10):554–564

    Article  CAS  Google Scholar 

  • Titus BD, Brown K, Helmisaari HS, Vanguelova E, Stupak I, Evans A, Clarke N, Guidi C, Bruckman VJ, Varnagiryte-Kabasinskiene I, Armolaitis K (2021) Sustainable forest biomass: a review of current residue harvesting guidelines. Energy Sustain Soc 11(1):1–32

    Google Scholar 

  • Tollefson J (2017) The wooden skyscrapers that could help to cool the planet. Nat News 545(7654):280–282

    Article  CAS  Google Scholar 

  • Torretta V, Rada EC, Ragazzi M, Trulli E, Istrate IA, Cioca LI (2015) Treatment and disposal of tyres: two EU approaches. A review. Waste Manag 45:152–160

    Article  CAS  Google Scholar 

  • Tsang YF, Kwon EE, Ok YS, Gao MT, Cao B (2018) Biowaste for energy recovery and environmental remediation. Process Saf Environ 115:1–38

    Article  CAS  Google Scholar 

  • Tue NM, Goto A, Takahashi S, Itai T, Asante KA, Kunisue T, Tanabe S (2016) Release of chlorinated, brominated and mixed halogenated dioxin-related compounds to soils from open burning of e-waste in Agbogbloshie (Accra, Ghana). J Hazard Mater 302:151–157

    Article  CAS  Google Scholar 

  • Ummalyma SB, Sahoo D, Pandey A (2020) Microalgal biorefineries for industrial products. In: Yousuf A (ed) Microalgae cultivation for biofuels production. Academic, London, pp 187–195

    Chapter  Google Scholar 

  • Usmani Z, Kumar V, Varjani S, Gupta P, Rani R, Chandra A (2020) Municipal solid waste to clean energy system: a contribution towards sustainable development. In: Varjani S, Pandey S, Gnansounou E, Khanal SK, Raveendran S (eds) Resource recovery from wastes. Elsevier, Amsterdam, Netherlands, pp 217–231

    Google Scholar 

  • Van den Oever M, Molenveld K, van der Zee M, Bos H (2017) Bio-based and biodegradable plastics: facts and figures: focus on food packaging in the Netherlands. No. 1722. Wageningen Food and Biobased Research, Wageningen, The Netherlands

    Google Scholar 

  • Vea EB, Romeo D, Thomsen M (2018) Biowaste valorisation in a future circular bioeconomy. Procedia CIRP 69:591–596

    Article  Google Scholar 

  • Vieira MV, Pastrana LM, Fuciños P (2020) Microalgae encapsulation systems for food, pharmaceutical and cosmetics applications. Mar Drugs 18(12):644

    Google Scholar 

  • Wang F, Ouyang D, Zhou Z, Page SJ, Liu D, Zhao X (2021) Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. J Energy Chem 57:247–280

    Article  Google Scholar 

  • Wijkman A, Skanberg K (2015) The circular economy and benefits for society. Club of Rome

    Google Scholar 

  • Wilson DC, Rodic L, Scheinberg A, Velis CA, Alabaster G (2012) Comparative analysis of solid waste management in 20 cities. Waste Manag Res 30:237–254

    Article  Google Scholar 

  • Yadav V, Karmakar S (2020) Sustainable collection and transportation of municipal solid waste in urban centers. Sustain Cities Soc 53:101937

    Google Scholar 

  • Yamakawa CK, Qin F, Mussatto SI (2018) Advances and opportunities in biomass conversion technologies and biorefineries for the development of a bio-based economy. Biomass Bioenergy 119:54–60

    Article  CAS  Google Scholar 

  • Yevtushenko A, Tolstoj-Sienkiewicz J (2006) Distribution of friction heat between a stationary pin and rotating ring. Arch Appl Mech 76:33–47

    Article  Google Scholar 

  • Zabaniotou A (2018) Redesigning a bioenergy sector in EU in the transition to circular waste-based bioeconomy—a multidisciplinary review. J Clean Prod 177:197–206

    Article  Google Scholar 

  • Zaman AU, Lehmann S (2013) The zero waste index: a performance measurement tool for waste management systems in a ‘zero waste city.’ J Clean Prod 1(50):123–132

    Article  Google Scholar 

  • Zhang M, Xie L, Yin Z, Khanal SK, Zhou Q (2016) Biorefinery approach for cassava-based industrial wastes: current status and opportunities. Bioresour Technol 215:50–62

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Adil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adil, M., Nasir, A., Sikandar, A., Khan, N.M. (2022). Recent Advances in Circular Bioeconomy. In: Abomohra, A.EF., Wang, Q., Huang, J. (eds) Waste-to-Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-91570-4_3

Download citation

Publish with us

Policies and ethics