Abstract
With the rapid development of e-commerce, massive data is generated from various e-commerce platforms. Most of the generated data can be represented in the forms of graph, which is capable to demonstrate the complicated relations among various entities, for example, graphs describe the interactions history between users and items. It is critical for the platforms to mine graph data to formulate recommendation strategy to gain more profits. For instance, in a user-item interaction graph, we can utilize graph data mining techniques to capture users’ behavioral patterns to make personalized recommendation strategies. Graph data mining in recommendation is currently a research topic attracts more and more attentions from industry and academic fields. In this half-day tutorial, we will present some key graph data mining methods and its applications in recommendation. We hope to find out the directions for the future work and that more theoretical models can be applied under real-world scenarios.
Keywords
- Graph data mining
- Recommender systems
- Graph neural networks
- Explainable machine learning
- Self-supervised learning
This is a preview of subscription content, access via your institution.
Buying options
References
Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018). https://doi.org/10.1109/TKDE.2018.2807452
Chen, C., Tsai, M., Lin, Y., Yang, Y.: Query-based music recommendations via preference embedding. In: Sen, S., Geyer, W., Freyne, J., Castells, P. (eds.) Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016, pp. 79–82. ACM (2016). https://doi.org/10.1145/2959100.2959169
Cooper, C., Lee, S.H., Radzik, T., Siantos, Y.: Random walks in recommender systems: Exact computation and simulations. In: Proceedings of the 23rd International Conference on World Wide Web, WWW 2014 Companion, pp. 811–816. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2567948.2579244
Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Krishnapuram, B., Shah, M., Smola, A.J., Aggarwal, C.C., Shen, D., Rastogi, R. (eds.) Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016, pp. 855–864. ACM (2016). https://doi.org/10.1145/2939672.2939754
Guo, Q., Zhuang, F., Qin, C., Zhu, H., Xie, X., Xiong, H., He, Q.: A survey on knowledge graph-based recommender systems. IEEE Trans. Knowl. Data Eng. (2020)
Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017, pp. 1024–1034 (2017). https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
He, X., Chua, T.S.: Neural factorization machines for sparse predictive analytics. In: Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval, pp. 355–364 (2017)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, Conference Track Proceedings, 24–26 April 2017. OpenReview.net (2017). https://openreview.net/forum?id=SJU4ayYgl
Liu, J., Duan, L.: A survey on knowledge graph-based recommender systems. In: 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), vol. 5, pp. 2450–2453 (2021). https://doi.org/10.1109/IAEAC50856.2021.9390863
Liu, Z., Ma, Y., Ouyang, Y., Xiong, Z.: Contrastive learning for recommender system. CoRR abs/2101.01317 (2021). https://arxiv.org/abs/2101.01317
Nastase, V., Mihalcea, R., Radev, D.R.: A survey of graphs in natural language processing. Nat. Lang. Eng. 21(5), 665–698 (2015)
Nikolakopoulos, A.N., Karypis, G.: RecWalk: nearly uncoupled random walks for top-n recommendation. In: Culpepper, J.S., Moffat, A., Bennett, P.N., Lerman, K. (eds.) Proceedings of the 12th ACM International Conference on Web Search and Data Mining, WSDM 2019, Melbourne, VIC, Australia, 11–15 February 2019, pp. 150–158. ACM (2019). https://doi.org/10.1145/3289600.3291016
Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Macskassy, S.A., Perlich, C., Leskovec, J., Wang, W., Ghani, R. (eds.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, New York, NY, USA, 24–27 August 2014, pp. 701–710. ACM (2014). https://doi.org/10.1145/2623330.2623732
Qiu, J., et al.: GCC: graph contrastive coding for graph neural network pre-training. In: Gupta, R., Liu, Y., Tang, J., Prakash, B.A. (eds.) The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, KDD 2020, CA, USA, 23–27 August 2020, pp. 1150–1160. ACM (2020). https://doi.org/10.1145/3394486.3403168
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: Gangemi, A., Leonardi, S., Panconesi, A. (eds.) Proceedings of the 24th International Conference on World Wide Web, WWW 2015, Florence, Italy, 18–22 May 2015, pp. 1067–1077. ACM (2015). https://doi.org/10.1145/2736277.2741093
Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: 6th International Conference on Learning Representations, ICLR 2018, Conference Track Proceedings, Vancouver, BC, Canada, 30 April–3 May 2018. OpenReview.net (2018). https://openreview.net/forum?id=rJXMpikCZ
Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. CoRR abs/1809.10341 (2018). http://arxiv.org/abs/1809.10341
Wang, F., Cui, P., Pei, J., Song, Y., Zang, C.: Recent advances on graph analytics and its applications in healthcare. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3545–3546 (2020)
Wu, S., Zhang, W., Sun, F., Cui, B.: Graph neural networks in recommender systems: a survey. CoRR abs/2011.02260 (2020). https://arxiv.org/abs/2011.02260
Xie, X., Sun, F., Liu, Z., Gao, J., Ding, B., Cui, B.: Contrastive pre-training for sequential recommendation. CoRR abs/2010.14395 (2020). https://arxiv.org/abs/2010.14395
Yang, J., Chen, C., Wang, C., Tsai, M.: HOP-rec: high-order proximity for implicit recommendation. In: Pera, S., Ekstrand, M.D., Amatriain, X., O’Donovan, J. (eds.) Proceedings of the 12th ACM Conference on Recommender Systems, RecSys 2018, Vancouver, BC, Canada, 2–7 October 2018, pp. 140–144. ACM (2018). https://doi.org/10.1145/3240323.3240381
Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural networks for web-scale recommender systems. In: Guo, Y., Farooq, F. (eds.) Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, London, UK, 19–23 August 2018, pp. 974–983. ACM (2018). https://doi.org/10.1145/3219819.3219890
You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 6–12 December 2020, virtual (2020). https://proceedings.neurips.cc/paper/2020/hash/3fe230348e9a12c13120749e3f9fa4cd-Abstract.html
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, H., Li, Y., Yang, H. (2021). Graph Data Mining in Recommender Systems. In: Zhang, W., Zou, L., Maamar, Z., Chen, L. (eds) Web Information Systems Engineering – WISE 2021. WISE 2021. Lecture Notes in Computer Science(), vol 13081. Springer, Cham. https://doi.org/10.1007/978-3-030-91560-5_36
Download citation
DOI: https://doi.org/10.1007/978-3-030-91560-5_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91559-9
Online ISBN: 978-3-030-91560-5
eBook Packages: Computer ScienceComputer Science (R0)