Skip to main content

Effects of Polychlorinated Biphenyls on Plant Growth

  • Chapter
  • First Online:
Sustainable Plant Nutrition under Contaminated Environments

Abstract

Polychlorinated biphenyls (PCBs), because of their chemical stability, cost-effective manufacturing, and non-flammability, were extensively used in lubricants, fluids, and electrical equipment coolant for years. Owing to the fat-soluble characteristics and steady biotransformation of PCBs, they are being discovered in human as well as animal tissues, despite the fact that both their making and utilization were prohibited in the 1970s. The universal existence of PCBs can be observed in every aspect of natural habitats involving flora, fauna, soil, air, and water; its definite origin in the ecosystem is yet unrevealed. Because of their lipophilic nature, PCBs can easily be part of the food chain. In addition to their lipophilic nature, PCBs are environmentally stable and can resist very high temperatures, so they can survive for a long time in the environment. However, studies show that high-level exposure to occupational locations for long-term PCBs through skin contact and inhalation exposure have not increased cancer risk. In fact, sensory (eye-skin) irritation is still the only persistent health effect among workers that can be attributed to PCBs. However, it is an established fact that PCBs cause growth inhibition of plants. In plants, PCB metabolism by plants takes place in three different ways. In the first process, the PCBs are oxidized to hydroxylated compounds. These products are reactive and soluble. In the second process, the activated compounds are conjugated with plant molecules, forming more soluble and lesser toxic compounds. In the last process, sequestration occurs in which conjugate molecules are adsorbed on the plant organelles. Phytoremediation is mediated through different mechanisms: phytoextraction, phytodegradation, phytostabilization, and rhizospheric degradation. Rhizospheric degradation occurs in rhizospheric soil immediately around the plant roots. Because PCBs are toxic in nature, these compounds cause harmful effects to both plants and animals. Soils, waters, food webs, or sediments could be sources of PCB contamination through biochemical cycles. Remediation of contaminated sites can be done using plants. Contaminated sites such as sludge, polluted groundwater, sediments, contaminated air, and soil can be treated for in situ and ex situ phytoremediation through pollutant degradation, stabilization, and removal. Phytoremediation is an environmentally safe and cost-effective approach for the treatment of potentially harmful PCBs as compared to other traditional techniques such as landfilling and incineration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aken BV (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol 26:225–227

    PubMed  Google Scholar 

  • Aken BV, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776

    PubMed  PubMed Central  Google Scholar 

  • Antolín-Rodríguez JM, Sánchez-Báscones M, Martín-Ramos P, Bravo-Sánchez CT, Martín-Gil J (2016) Estimation of PCB content in agricultural soils associated with long-term fertilization with organic waste. Environ Sci Pollut Res 23(12):12372–12383

    Google Scholar 

  • Anyasi RO, Atagana HL (2011) Biological remediation of polychlorinated biphenyls (PCB) in the environment by microorganisms and plants. Afr J Biotechnol 10(82):18916–18938

    CAS  Google Scholar 

  • Arthur EL, Rice PJ, Rice PJ, Anderson TA, Baladi SM, Henderson KL, Coats JR (2005) Phytoremediation—an overview. Crit Rev Plant Sci 24(2):109–122

    CAS  Google Scholar 

  • Åslund MLW, Zeeb BA, Rutter A, Reimer KJ (2007) In situ phytoextraction of polychlorinated biphenyl (PCB)-contaminated soil. Sci Total Environ 374(1):1–12

    Google Scholar 

  • Åslund MLW, Rutter A, Reimer KJ, Zeeb BA (2008) The effects of repeated planting, planting density, and specific transfer pathways on PCB uptake by Cucurbita pepo grown in field conditions. Sci Total Environ 405(1–3):14–25

    Google Scholar 

  • Awan B, Sabeen M, Shaheen S, Mahmood Q, Ebadi AG, Toughani. M (2020) Phytoremediation of zinc contaminated water by marigold (Tagetes minuta L). Cent Asian J Environ Sci Technol Innov 1(3):150–158. https://doi.org/10.22034/CAJESTI.2020.03.04

    Article  Google Scholar 

  • Beyer A, Biziuk M (2009) Environmental fate and global distribution of polychlorinated biphenyls. In: Reviews of environmental contamination and toxicology, vol 201. Springer, Boston, pp 137–158

    Google Scholar 

  • Borja J, Marie-Teleon D, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40:1999–2013

    CAS  Google Scholar 

  • Bruner-Tran KL, Osteen KG (2010) Dioxin-like PCBs and endometriosis. Syst Biol Reprod Med 56(2):132–146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burken JG (2003) Uptake and metabolism of organic compounds: green liver model. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation. Transformation and control of contaminants Wiley interscience. John Wiley Sons, Inc, Hoboken, pp 59–84

    Google Scholar 

  • Cetin B, Yurdakul S, Gungormus E, Ozturk F, Sofuoglu SC (2018) Source apportionment and carcinogenic risk assessment of passive air sampler-derived PAHs and PCBs in a heavily industrialized region. Sci Total Environ 633:30–41

    CAS  PubMed  Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Cupta S, Joner EJ (2005) Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12(1):34–48

    CAS  Google Scholar 

  • Chekol T, Vough LR, Chaney RL (2004) Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Environ Int 30(6):799–804

    CAS  PubMed  Google Scholar 

  • Chroma L, Moeder M, Kucerova P, Macek T, Mackova M (2003) Plant enzymes in metabolism of polychlorinated biphenyls. Fresen Environ Bull 12(3):291–295

    CAS  Google Scholar 

  • Davies H, Delistraty D (2016) Evaluation of PCB sources and releases for identifying priorities to reduce PCBs in Washington state (USA). Environ Sci Pollut Res 23(3):2033–2041

    CAS  Google Scholar 

  • de Souza AC, Taniguchi S, Figueira RCL, Montone RC, Bícego MC, Martins CC (2018) Historical records and spatial distribution of high hazard PCBs levels in sediments around a large South American industrial coastal area (Santos Estuary, Brazil). J Hazard Mater 360:428–435

    PubMed  Google Scholar 

  • Delgado IF, Barretto HH, Kussumi TA, Alleluia IB, Baggio CDA, Paumgartten FJR (2002) Serum levels of organochlorine pesticides and polychlorinated biphenyls among inhabitants of Greater Metropolitan Rio de Janeiro, Brazil. Cad Saude Publica 18(2):519–524.5

    PubMed  Google Scholar 

  • Denyes MJ, Langlois VS, Rutter A, Zeeb BA (2012) The use of biochar to reduce soil PCB bioavailability to Cucurbita pepo and Eisenia fetida. Sci Total Environ 437:76–82

    CAS  PubMed  Google Scholar 

  • Denyes MJ, Rutter A, Zeeb BA (2013) In situ application of activated carbon and biochar to PCB-contaminated soil and the effects of mixing regime. Environ Pollut 182:201–208

    CAS  PubMed  Google Scholar 

  • Dudášová H, Lukáčová L, Murínová S, Dercová K (2012) Effects of plant terpenes on biodegradation of polychlorinated biphenyls (PCBs). Int Biodeter Biodegr 69:23–27

    Google Scholar 

  • Dzantor EK, Woolston J (2001) Enhancing dissipation of aroclor 1248 using substrate amendment in rhizosphere soil. J Environ Sci Health A36(10):1861–1871

    CAS  Google Scholar 

  • Dzantor EK, Chekol T, Vough., L. R. (2000) Feasibility of using forage grasses and legumes for phytoremediation of organic pollutants. J Environ Sci Health A35(9):1645–1661

    CAS  Google Scholar 

  • Ehsani S, Hayes D (2018) Efficacy of dredging for remediating polychlorinated biphenyl-contaminated sediments of the lower Fox River. Environ Eng Sci 35(12):1387–1393

    CAS  Google Scholar 

  • EPA (1978) U.S. Environmental Protection Agency. Support document: Draft voluntary environmental impact statement for polychlorinated biphenyls (PCBs) manufacturing, processing, distribution in commerce and use ban regulation

    Google Scholar 

  • Fu JJ, Wang YW, Zhang AQ et al (2011) Spatial distribution of polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs) in an e-waste dismantling region in Southeast China: use of apple snail (Ampullariidae) as a bioindicator. Chemosphere 82:648–655

    CAS  PubMed  Google Scholar 

  • Furukawa K, Fujihara H (2008) Microbial degradation of polychlorinated biphenyls: biochemical and molecular features. J Biosci Bioeng 105:433–449

    CAS  PubMed  Google Scholar 

  • Furukawa K, Hikaru S, Masatoshi G (2004) Biphenyl dioxygenases. Functional versatilities and directed evolution. J Bacteriol 186:5189–5196

    CAS  PubMed  PubMed Central  Google Scholar 

  • García-de la Parra LM, Cervantes-Mojica LJ, González-Valdivia C, Martínez-Cordero FJ, Aguilar-Zárate G, Bastidas-Bastidas P, Betancourt-Lozano M (2012) Distribution of pesticides and PCBs in sediments of agricultural drains in the Culiacan Valley, Sinaloa, Mexico. Arch Environ Contam Toxicol 63(3):323–336

    PubMed  Google Scholar 

  • Gasic B, MacLeod M, Klanova J, Scheringer M, Ilic P, Lammel G, Hungerbühler K (2010) Quantification of sources of PCBs to the atmosphere in urban areas: a comparison of cities in North America, Western Europe and former Yugoslavia. Environ Pollut 158(10):3230–3235

    CAS  PubMed  Google Scholar 

  • Golden R, Doull J, Waddell W, Mandel J (2003) Potential human cancer risks from exposure to PCBs: a tale of two evaluations. Crit Rev Toxicol 33(5):543–580

    CAS  PubMed  Google Scholar 

  • Grimm FA, Hu D, Kania-Korwel I, Lehmler HJ, Ludewig G, Hornbuckle KC, Duffel MW, Bergman A, Robertso LW (2015) Metabolism and metabolites of polychlorinated biphenyls (PCBs). Crit Rev Toxicol 45:245–272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halfadji A, Touabet A, Portet-Koltalo F, Le Derf F, Merlet-Machour N (2019) Concentrations and source identification of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in agricultural, urban/residential, and industrial soils, east of Oran (Northwest Algeria). Polycycl Aromat Compd 39(4):299–310

    CAS  Google Scholar 

  • Hatamian-Zarmi A, Shojaosadati SA, Vasheghani-Farahani E, Hosseinkhani S, Emamzadeh A (2009) Extensive biodegradation of highly chlorinated biphenyl and Aroclor 1242 by Pseudomonas aeruginosa TMU56 isolated from contaminated soil. Int Biodeter Biodegr 63:788–794

    CAS  Google Scholar 

  • Hayat A, Hussain I, Soja G, Iqbal M, Shahid N, Syed JH, Yousaf S (2019) Organic and chemical amendments positively modulate the bacterial proliferation for effective rhizoremediation of PCBs-contaminated soil. Ecol Eng 138:412–419

    Google Scholar 

  • Hu GC, Luo XJ, Dai JY, Zhang XL, Wu H, Zhang CL, Wei FW (2008) Brominated flame retardants, polychlorinated biphenyls, and organochlorine pesticides in captive giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) from China. Environ Sci Technol 42(13):4704–4709

    CAS  PubMed  Google Scholar 

  • Hu GJ, Chen SL, Zhao YG, Sun C, Li J, Wang H (2009) Persistent toxic substances in agricultural soils of Lishui County, Jiangsu Province, China. Bull Environ Contam Toxicol 82(1):48–54

    CAS  PubMed  Google Scholar 

  • Idris A, Ahmed M (2003) Treatment of polluted soil using bioremediation–a review. Faculty of Chemical and Environmental Engineering, University of Putra, Malaysia, pp 1–18

    Google Scholar 

  • Jing R, Fusi S, Kjellerup BV (2018) Remediation of polychlorinated biphenyls (PCBs) in contaminated soils and sediment: state of knowledge and perspectives. Front Environ Sci 6:79

    Google Scholar 

  • Kobayashi T, Navarro RR, Tatsumi K, Iimura Y (2008) Influence of compost amendment on pyrene availability from artificially spiked soil to two subspecies of Cucurbita pepo. Sci Total Environ 404(1):1–9

    CAS  PubMed  Google Scholar 

  • Leigh MB, Prouzová P, Macková M, Macek T, Nagle DP, Fletcher JS (2006) Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microbiol 72(4):2331–2342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Liang F, Zhu Y, Wang F (2013) Phytoremediation of a PCB-contaminated soil by alfalfa and tall fescue single and mixed plants cultivation. J Soil Sediment 13(5):925–931

    CAS  Google Scholar 

  • Li Q, Lu Y, Wang P, Wang T, Suriyanarayanan S, Liang R, Khan K (2018) Distribution, source, and risk of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in urban and rural soils around the Yellow and Bohai Seas, China. Environ Pollut 239:233–241

    CAS  PubMed  Google Scholar 

  • Liu JY, Schnoor JL (2008) Uptake and translocation of lesser chlorinated polychlorinated biphenyls (PCBs) in whole hybrid poplar plants after hydroponic exposure. Chemosphere 73:1608–1616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Low JE, Whitfield Åslund ML, Rutter A, Zeeb BA (2010) Effect of plant age on PCB accumulation by Cucurbita pepo ssp. pepo. J Environ Qual 39(1):245–250

    CAS  PubMed  Google Scholar 

  • Macek T, Macková M, Kucerová P, Chromá L, Burkhard J, Demnerova K (2002) Phytoremediation. In: Agathos SN, Reineke W (eds) Biotechnology for the environment: soil remediation. Kluwer Academic Publishers, Brussels, pp 115–137

    Google Scholar 

  • Macek T, Francova K, Kochánková L, Lovecká P, Ryslava E, Rezek J, Mackova M (2004) Phytoremediation—biological cleaning of a polluted environment. Rev Environ Health 19(1):63–82

    CAS  PubMed  Google Scholar 

  • Macek T, Surá M, Pavliková D, Francová K, Scouten WH, Szekeres M, Macková M (2005) Can tobacco have a potentially beneficial effect to our health? Zeitschrift fur Naturforschung C (J Biosci) 60(3-4):292–299

    CAS  Google Scholar 

  • Macková M, Vrchotová B, Francová K, Sylvestre M, Tomaniová M, Lovecká P, Macek T (2007) Biotransformation of PCBs by plants and bacteria–consequences of plant–microbe interactions. Eur J Soil Biol 43(4):233–241

    Google Scholar 

  • Magee KD, Michael A, Ullah H, Dutta SK (2008) Dechlorination of PCB in the presence of plant nitrate reductase. Environ Toxicol Pharmacol 25(2):144–147

    CAS  PubMed  Google Scholar 

  • Markowitz G, Rosner D (2018) Monsanto, PCBs, and the creation of a “world-wide ecological problem”. J Public Health Policy 39(4):463–540

    PubMed  Google Scholar 

  • Mehmannavaz R, Prasher SO, Ahmad D (2002) Rhizospheric effects of alfalfa on biotransformation of polychlorinated biphenyls in a contaminated soil augmented with Sinorhizobium meliloti. Process Biochem 37(9):955–963

    CAS  Google Scholar 

  • Montone RC, Taniguchi S, Weber RR (2001) Polychlorinated biphenyls in marine sediments of Admiralty Bbay, King George Island, Antarctica. Mar Pollut Bull 42(7):611–614

    CAS  PubMed  Google Scholar 

  • Needham TP, Ghosh U (2019) Four decades since the ban, old urban wastewater treatment plant remains a dominant source of PCBs to the environment. Environ Pollut 246:390–397

    CAS  PubMed  Google Scholar 

  • Olson PE, Castro A, Joern M, DuTeau NM, Pilon-Smits EA, Reardon KF (2007) Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon-contaminated soil. J Environ Qual 36(5):1461–1469

    CAS  PubMed  Google Scholar 

  • Omwoma S, Mbithi BM, Pandelova M, Ssebugere P, Lalah JO, Wang Y, Schramm KW (2019) Comparative exposomics of persistent organic pollutants (PCBs, OCPs, MCCPs and SCCPs) and polycyclic aromatic hydrocarbons (PAHs) in Lake Victoria (Africa) and Three Gorges Reservoir (China). Sci Total Environ 695:133789

    CAS  PubMed  Google Scholar 

  • Pal A, Wauters G, Paul AK (2007) Nickel tolerance and accumulation by bacteria from rhizosphere of nickel hyperaccumulators in serpentine soil ecosystem of Andaman, India. Plant and Soil, 293(1):37–48

    Google Scholar 

  • Pieper DH, Seeger M (2008) Bacterial metabolism of polychlorinated biphenyls. J Mol Microbiol Biotechnol 15(2–3):121–138

    Google Scholar 

  • Pino NJ, Muñera LM, Peñuela GA (2016) Bioaugmentation with immobilized microorganisms to enhance phytoremediation of PCB-contaminated soil. Soil Sediment Contam Int J 25(4):419–430

    CAS  Google Scholar 

  • Pino NJ, Múnera LM, Peñuela GA (2019) Phytoremediation of soil contaminated with PCBs using different plants and their associated microbial communities. Int J Phytoremediation 21(4):316–324

    CAS  PubMed  Google Scholar 

  • Quintanilla-López JE, Galindo-Iranzo P, Lebrón-Aguilar R (2020) Congener-specific determination of hydroxylated polychlorinated biphenyls by polar-embedded reversed-phase liquid chromatography-tandem mass spectrometry. J Chromatogr A 1626:461353

    PubMed  Google Scholar 

  • Reddy AVB, Moniruzzaman M, Aminabhavi TM (2019) Polychlorinated biphenyls (PCBs) in the environment: recent updates on sampling, pretreatment, cleanup technologies and their analysis. Chem Eng J 358:1186–1207

    CAS  Google Scholar 

  • Reddy AVB, Moniruzzaman M, Madhavi G, Aminabhavi TM (2020) Modern approaches in separation, identification and quantification of polychlorinated biphenyls. Curr Opin Environ Sci Health 18:26–39

    Google Scholar 

  • Rezek J, Macek T, Mackova M, Triska J (2007) Plants metabolites of polychlorinated biphenyls in hairy root culture of black nightshade Solanum nigrum SNC-90. Chemosphere 69:1221–1227

    CAS  PubMed  Google Scholar 

  • Ross G (2004) The public health implications of polychlorinated biphenyls (PCBs) in the environment. Ecotoxicol Environ Saf 59(3):275–291

    CAS  PubMed  Google Scholar 

  • Sadañoski MA, Tatarin AS, Barchuk ML, Gonzalez M, Pegoraro CN, Fonseca MI, Villalba LL (2020) Evaluation of bioremediation strategies for treating recalcitrant halo-organic pollutants in soil environments. Ecotoxicol Environ Saf 202:110929

    PubMed  Google Scholar 

  • Samara F, Tsai CW, Aga DS (2006) Determination of potential sources of PCBs and PBDEs in sediments of the Niagara River. Environ Pollut 139(3):489–497

    CAS  PubMed  Google Scholar 

  • Schnoor JL (2002) Phytoremediation of soil and groundwater. GWRT Series E-Series TE-02-01:1–45

    Google Scholar 

  • Sharma BM, Nizzetto L, Bharat GK, Tayal S, Melymuk L, Sáňka O, Larssen T (2015) Melting Himalayan glaciers contaminated by legacy atmospheric depositions are important sources of PCBs and high-molecular-weight PAHs for the Ganges floodplain during dry periods. Environ Pollut 206:588–596

    CAS  PubMed  Google Scholar 

  • Sierra I, Valera JL, Marina ML, Laborda F (2003) Study of the biodegradation process of polychlorinated biphenyls in liquid medium and soil by a new isolated aerobic bacterium (Janibacter sp.). Chemosphere 53(6):609–618

    CAS  PubMed  Google Scholar 

  • Smith KE, Banks MK, Schwab AP (2009) Dewatering of contaminated sediments: greenhouse and field studies. Ecol Eng 35(10):1523–1528

    Google Scholar 

  • Sofuoglu SC, Sofuoglu A, Holsen TM, Alexander CM, Pagano JJ (2013) Atmospheric concentrations and potential sources of PCBs, PBDEs, and pesticides to Acadia National Park. Environ Pollut 177:116–124

    CAS  PubMed  Google Scholar 

  • Sun J, Pan L, Tsang DC, Zhan Y, Liu W, Wang X, Li X (2016) Polychlorinated biphenyls in agricultural soils from the Yangtze River Delta of China: regional contamination characteristics, combined ecological effects and human health risks. Chemosphere 163:422–428

    CAS  PubMed  Google Scholar 

  • Teng Y, Zheng MK, Luo YM, Gao J, Li ZG, Wu LH (2008) Spatial distribution of soil PCBs congeners in typical area of Yangtze River delta region. Huan jing ke xue (Huanjing kexue) 29(12):3477–3482

    Google Scholar 

  • Toro SD, Zanaroli G, Fava F (2006) Aerobic bioremediation of an actual site soil historically contaminated by polychlorinated biphenyls (PCBs) through bioaugmentation with a non-acclimated, complex source of microorganisms. Microb Cell Fact 5:11

    PubMed  PubMed Central  Google Scholar 

  • Trapp S, Kulhanek A (2006) Human exposure for food: one equation for all crops is not enough. In: Macková M, Macek T, Dowling D (eds) Phytoremediation and rhizoremediation: focus on biotechnology, vol 9A. Springer, Berlin Heidelberg

    Google Scholar 

  • Urbaniak M, Lee S, Takazawa M, Mierzejewska E, Baran A, Kannan K (2019) Effects of soil amendment with PCB-contaminated sediment on the growth of two cucurbit species. Environ Sci Pollut Res Int:1–13

    Google Scholar 

  • Urbaniak M, Baran A, Lee S, Kannan K (2020) Effects of amendments of PCB-containing Hudson River sediment on soil quality and biochemical and growth response of cucumber (Cucumis sativus L. cv ‘Wisconsin SMR 58’) Int J Phytoremediation:1–9

    Google Scholar 

  • Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, Rose M (2006) The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93(2):223–241

    PubMed  Google Scholar 

  • Van Metre PC, Mahler BJ, Furlong ET (2000) Urban sprawl leaves its PAH signature. Environ Sci Technol 34(19):4064–4070

    Google Scholar 

  • Vergani L, Mapelli F, Suman J, Cajthaml T, Uhlik O, Borin S (2019) Novel PCB-degrading Rhodococcus strains able to promote plant growth for assisted rhizoremediation of historically polluted soils. PLoS One 14(8):0221253

    Google Scholar 

  • Wiszniewska A, Hanus-Fajerska E, Muszyńska E, Ciarkowska K (2016) Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress. Pedosphere 26(1):1–12

    Google Scholar 

  • Wittsiepe J, Fürst P, Wilhelm M (2007) The 2005 World Health Organization re-evaluation of TEFs for dioxins and dioxin-like compounds—what are the consequences for German human background levels? Int J Hyg Environ Health 210(3–4):335–339

    CAS  PubMed  Google Scholar 

  • Wyrwicka A, Steffani S, Urbaniak M (2014) The effect of PCB-contaminated sewage sludge and sediment on metabolism of cucumber plants (Cucumis sativus L.)´. Ecohydrol Hydrobiol 14(1):75–82

    Google Scholar 

  • Yao M, Hu T, Wang Y, Du Y, Hu C, Wu R (2017) Polychlorinated biphenyls and its potential role in endometriosis. Environ Pollut 229:837–845

    CAS  PubMed  Google Scholar 

  • Zeeb BA, Amphlett JS, Rutter A, Reimer KJ (2006) Potential for phytoremediation of polychlorinated biphenyl (PCB) contaminated soil. Int J Phytoremediation 8(3):199–221

    CAS  PubMed  Google Scholar 

  • Zhao Y, Zhan J, Liu G, Ren Z, Zheng M, Jin R, Zhang X (2017) Field study and theoretical evidence for the profiles and underlying mechanisms of PCDD/F formation in cement kilns co-incinerating municipal solid waste and sewage sludge. Waste Manag 61:337–344

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malik Tahir Hayat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iqbal, N. et al. (2022). Effects of Polychlorinated Biphenyls on Plant Growth. In: Mahmood, Q. (eds) Sustainable Plant Nutrition under Contaminated Environments. Sustainable Plant Nutrition in a Changing World. Springer, Cham. https://doi.org/10.1007/978-3-030-91499-8_10

Download citation

Publish with us

Policies and ethics