Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th Symposium on Operating Systems Design and Implementation, pp. 265–283. USENIX (2016)
Google Scholar
Baresi, L., Guinea, S., Leva, A., Quattrocchi, G.: A discrete-time feedback controller for containerized cloud applications. In: Proceedings of the 2016 24th International Symposium on Foundations of Software Engineering, pp. 217–228. ACM (2016)
Google Scholar
Baresi, L., Leva, A., Quattrocchi, G.: Fine-grained dynamic resource allocation for big-data applications. IEEE Trans. Softw. Eng. 47(8), 1668–1682 (2021)
CrossRef
Google Scholar
Chen, L., Huo, X., Agrawal, G.: Accelerating MapReduce on a coupled CPU-GPU architecture. In: Hollingsworth, J.K. (ed.) SC Conference on High Performance Computing Networking, Storage and Analysis, pp. 1–11. IEEE/ACM (2012)
Google Scholar
Chen, T., Li, M., et al.: MXNet: a Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems. arXiv (2015)
Google Scholar
Containerd: an industry-standard container runtime with an emphasis on simplicity, robustness and portability (2021). https://containerd.io
Ding, J., Cao, R., Saravanan, I., Morris, N., Stewart, C.: Characterizing service level objectives for cloud services: realities and myths. In: 2019 IEEE International Conference on Autonomic Computing (ICAC), pp. 200–206. IEEE (2019)
Google Scholar
Farokhi, S., Lakew, E.B., Klein, C., Brandic, I., Elmroth, E.: Coordinating CPU and memory elasticity controllers to meet service response time constraints. In: 2015 International Conference on Cloud and Autonomic Computing, pp. 69–80 (2015)
Google Scholar
Fedorov, R., Camerada, A., et al.: Estimating snow cover from publicly available images. IEEE Trans. Multimed. 18(6), 1187–1200 (2016)
CrossRef
Google Scholar
Forbes: TensorFlow Turns 5 - Five Reasons Why it is the Most Popular ML Framework. http://tiny.cc/Forbes-TF (2020)
He, K., Zhang, X., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Google Scholar
Jahani, A., Lattuada, M., Ciavotta, M., Ardagna, D., Amaldi, E., Zhang, L.: Optimizing on-demand GPUs in the cloud for deep learning applications training. In: 2019 4th International Conference on Computing, Communications and Security (ICCCS), pp. 1–8 (2019)
Google Scholar
Khalid, Y.N., Aleem, M., Prodan, R., Iqbal, M.A., Islam, M.A.: E-OSched: a load balancing scheduler for heterogeneous multicores. J. Supercomput. 74(10), 5399–5431 (2018)
CrossRef
Google Scholar
Kubernetes: Don’t Panic: Kubernetes and Docker (2020). https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker
Kubernetes: Schedule GPUs (2020). https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/
Lakew, E., Papadopoulos, A., Maggio, M., Klein, C., Elmroth, E.: KPI-agnostic control for fine-grained vertical elasticity. In: Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 589–598. IEEE (2017)
Google Scholar
Mittal, S., Vetter, J.S.: A survey of CPU-GPU heterogeneous computing techniques. ACM Comput. Surv. 47(4), 69:1–69:35 (2015)
Google Scholar
Nozal, R., Bosque, J.L., Beivide, R.: EngineCL: usability and performance in heterogeneous computing. Future Gener. Comput. Syst. 107, 522–537 (2020)
CrossRef
Google Scholar
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Proc. Syst. 32, 8024–8035 (2019)
Google Scholar
Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
Google Scholar
Verma, A., Cherkasova, L., et al.: Deadline-based workload management for MapReduce environments: pieces of the performance puzzle. In: 2012 IEEE Network Operations and Management Symposium, pp. 900–905. IEEE (2012)
Google Scholar
Zhang, X., Zou, J., He, K., Sun, J.: Accelerating very deep convolutional networks for classification and detection. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 1943–1955 (2015)
CrossRef
Google Scholar