Skip to main content

EEG-Based Depression Detection with a Synthesis-Based Data Augmentation Strategy

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13064))

Included in the following conference series:

  • 1740 Accesses

Abstract

Recently, Electroencephalography (EEG) is wildly used in depression detection. Researchers have successfully used machine learning methods to build depression detection models based on EEG signals. However, the scarcity of samples and individual differences in EEG signals limit the generalization performance of machine learning models. This study proposed a synthesis-based data augmentation strategy to improve the diversity of raw EEG signals and train more robust classifiers for depression detection. Firstly, we use the determinantal point processes (DPP) sampling method to investigate the individual differences of the raw EEG signals and generate a more diverse subset of subjects. Then we apply the empirical mode decomposition (EMD) method on the subset and mix the intrinsic mode functions (IMFs) to synthesize augmented EEG signals under the guidance of diversity of subjects. Experimental results show that compared with the traditional signal synthesis methods, the classification accuracy of our method can reach 75% which substantially improve the generalization performance of classifiers for depression detection. And DPP sampling yields relatively higher classification accuracy compared to prevailing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma, M., Achuth, P., Deb, D., Puthankattil, S.D., Acharya, U.R.: An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with EEG signals. Cogn. Syst. Res. 52, 508–520 (2018)

    Article  Google Scholar 

  2. Kessler, R.C., Chiu, W.T., Demler, O., Walters, E.E.: Prevalence, severity, and comorbidity of 12-month dsm-iv disorders in the national comorbidity survey replication. Arch. Gen. Psychiatry 62(6), 617–627 (2005)

    Article  Google Scholar 

  3. Hardeveld, F., et al.: Recurrence of major depressive disorder across different treatment settings: results from the NESDA study. J. Affect. Disord. 147(1–3), 225–231 (2013)

    Article  Google Scholar 

  4. Kreezer, G.: The electro-encephalogram and its use in psychology. Am. J. Psychol. 51(4), 737–759 (1938)

    Article  Google Scholar 

  5. Hosseinifard, B., Moradi, M.H., Rostami, R.: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput. Methods Program. Biomed. 109(3), 339–345 (2013)

    Article  Google Scholar 

  6. Acharya, U.R., et al.: A novel depression diagnosis index using nonlinear features in EEG signals. Eur. Neurol. 74(1–2), 79–83 (2015)

    Article  Google Scholar 

  7. Hinrikus, H., et al.: Electroencephalographic spectral asymmetry index for detection of depression. Med. Biol. Eng. Comput. 47(12), 1291–1299 (2009)

    Article  Google Scholar 

  8. Shen, J., Zhang, X., Hu, B., Wang, G., Ding, Z.: An improved empirical mode decomposition of electroencephalogram signals for depression detection. IEEE Trans. Affect. Comput. (2019)

    Google Scholar 

  9. Zhang, X., Shen, J., ud Din, Z., Liu, J., Wang, G., Hu, B.: Multimodal depression detection: fusion of electroencephalography and paralinguistic behaviors using a novel strategy for classifier ensemble. IEEE J. Biomed. Health Inf. 23(6), 2265–2275 (2019)

    Google Scholar 

  10. Ay, B., et al.: Automated depression detection using deep representation and sequence learning with EEG signals. J. Med. Syst. 43(7), 1–12 (2019)

    Article  Google Scholar 

  11. Tian, C., Xu, Y., Zuo, W.: Image denoising using deep CNN with batch renormalization. Neural Netw. 121, 461–473 (2020)

    Article  Google Scholar 

  12. Zhang, X., Li, J., Hou, K., Hu, B., Shen, J., Pan, J.: Eeg-based depression detection using convolutional neural network with demographic attention mechanism. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 128–133. IEEE (2020)

    Google Scholar 

  13. Jorm, A.F., et al.: MRI hyperintensities and depressive symptoms in a community sample of individuals 60–64 years old. Am. J. Psychiatry 162(4), 699–705 (2005)

    Article  Google Scholar 

  14. Siegel, M.J., Bradley, E.H., Gallo, W.T., Kasl, S.V.: The effect of spousal mental and physical health on husbands’ and wives’ depressive symptoms, among older adults: longitudinal evidence from the health and retirement survey. J. Aging Health 16(3), 398–425 (2004)

    Article  Google Scholar 

  15. Van Putten, M.J., Olbrich, S., Arns, M.: Predicting sex from brain rhythms with deep learning. Sci. Rep. 8(1), 1–7 (2018)

    Google Scholar 

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  17. Paris, A., Atia, G.K., Vosoughi, A., Berman, S.A.: A new statistical model of electroencephalogram noise spectra for real-time brain-computer interfaces. IEEE Trans. Biomed. Eng. 64(8), 1688–1700 (2016)

    Article  Google Scholar 

  18. Lotte, F.: Generating artificial eeg signals to reduce BCI calibration time. In: 5th International Brain-Computer Interface Workshop, pp. 176–179 (2011)

    Google Scholar 

  19. Le Guennec, A., Malinowski, S., Tavenard, R.: Data augmentation for time series classification using convolutional neural networks. In: ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data (2016)

    Google Scholar 

  20. Dinarès-Ferran, J., Ortner, R., Guger, C., Solé-Casals, J.: A new method to generate artificial frames using the empirical mode decomposition for an EEG-based motor imagery BCI. Front. Neurosci. 12, 308 (2018)

    Article  Google Scholar 

  21. Zhang, Z., et al.: A novel deep learning approach with data augmentation to classify motor imagery signals. IEEE Access 7, 15945–15954 (2019)

    Article  Google Scholar 

  22. Sheehan, D.V., et al.: The mini-international neuropsychiatric interview (mini): the development and validation of a structured diagnostic psychiatric interview for dsm-iv and icd-10. J. Clin. Psychiatry 59(20), 22–33 (1998)

    PubMed  Google Scholar 

  23. Kroenke, K., Spitzer, R.L., Williams, J.B.: The PHQ-9: validity of a brief depression severity measure. J. Gen. Intern. Med. 16(9), 606–613 (2001)

    Article  CAS  Google Scholar 

  24. Molla, M.K., Tanaka, T., Rutkowski, T.M., Cichocki, A.: Separation of EOG artifacts from EEG signals using bivariate EMD. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 562–565. IEEE (2010)

    Google Scholar 

  25. Liu, P., Wang, X., Xiang, C., Meng, W.: A survey of text data augmentation. In: 2020 International Conference on Computer Communication and Network Security (CCNS), pp. 191–195. IEEE (2020)

    Google Scholar 

  26. Li, K., Shapiai, M.I., Adam, A., Ibrahim, Z.: Feature scaling for EEG human concentration using particle swarm optimization. In: 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE), pp. 1–6. IEEE (2016)

    Google Scholar 

  27. Yamauchi, T., Xiao, K., Bowman, C., Mueen, A.: Dynamic time warping: a single dry electrode EEG study in a self-paced learning task. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 56–62. IEEE (2015)

    Google Scholar 

  28. Flandrin, P., Rilling, G., Goncalves, P.: Empirical mode decomposition as a filter bank. IEEE Sig. Process. Lett. 11(2), 112–114 (2004)

    Article  Google Scholar 

  29. Bajaj, V., Pachori, R.B.: Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans. Inf. Technol. Biomed. 16(6), 1135–1142 (2011)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by National Key R&D Program of China (Grant No. 2019YFA0706200), in part by the National Natural Science Foundation of China (Grant No. 62072219, 61632014), in part by the National Basic Research Program of China (973 Program, Grant No.2014CB744600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaowei Zhang or Bin Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, X., Chen, M., Wu, M., Zhang, X., Hu, B. (2021). EEG-Based Depression Detection with a Synthesis-Based Data Augmentation Strategy. In: Wei, Y., Li, M., Skums, P., Cai, Z. (eds) Bioinformatics Research and Applications. ISBRA 2021. Lecture Notes in Computer Science(), vol 13064. Springer, Cham. https://doi.org/10.1007/978-3-030-91415-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91415-8_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91414-1

  • Online ISBN: 978-3-030-91415-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics