Skip to main content

A Sequence-Based Antibody Paratope Prediction Model Through Combing Local-Global Information and Partner Features

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2021)

Abstract

Antibodies are proteins which play a vital role in the immune system by recognizing and neutralizing antigens. The region on the antibody binding to an antigen, known as paratope, mediates antibody-antigen interaction with high affinity and specificity. And the accurate prediction of those regions from antibody sequence contributes to the design of therapeutic antibodies and remains challenging. However, the experimental methods are time-consuming and expensive. In this article, we propose a sequence-based method for antibody paratope prediction by combing local and global information of antibody sequence and partner features from partner antigen sequence. Convolution Neural Networks (CNNs) and a sliding window approach on antibody sequence are used to extract local information. Attention-based Bidirectional Long Short-Term Memory (Att-BLSTM) on antibody sequence are used to extract global information. Also, the partner antigen is vital for paratope prediction, and we employ Att-BLSTM on the partner antigen sequence as well. The outputs of CNNs and Att-BLSTM networks are combined to predict antibody paratope by fully-connected networks. The experiments show that our proposed method achieves superior performance over the state-of-the-art sequenced-based antibody paratope prediction methods on benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altschul, S.F., et al.: Lipman: gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997)

    Article  CAS  Google Scholar 

  2. Ambrosetti, F., et al.: proABC-2: PRediction Of AntiBody Contacts v2 and its application to information-driven docking. Bioinformatics, 1–2 (2020). https://doi.org/10.1093/bioinformatics/btaa644

  3. Bax, A., Grzesiek, S.: Methodological advances in protein NMR. Accounts Chem. Res. 26(4), 131–138 (1993). https://doi.org/10.1021/ar00028a001

  4. Bin, Y., Yang, Y., Shen, F., Xie, N., Shen, H.T., Li, X.: Describing video with attention-based bidirectional LSTM. IEEE Trans. Cybern. 49(7), 2631–2641 (2019). https://doi.org/10.1109/TCYB.2018.2831447

    Article  PubMed  Google Scholar 

  5. Daberdaku, S., Ferrari, C.: Antibody interface prediction with 3D Zernike descriptors and SVM. Bioinformatics 35(11), 1870–1876 (2018). https://doi.org/10.1093/bioinformatics/bty918

    Article  CAS  Google Scholar 

  6. Deac, A., Velickovic, P., Sormanni, P.: Attentive cross-modal paratope prediction. J. Comput. Biol. 26(6), 536–545 (2019). https://doi.org/10.1089/cmb.2018.0175

    Article  CAS  PubMed  Google Scholar 

  7. Del Vecchio, A., Deac, A., Liò, P., Veličković, P.: Neural message passing for joint paratope-epitope prediction. arXiv, pp. 1–5 (2021)

    Google Scholar 

  8. Esmaielbeiki, R., Krawczyk, K., Knapp, B., Nebel, J.C., Deane, C.M.: Progress and challenges in predicting protein interfaces. Brief. Bioinform. 17(1), 117–131 (2016). https://doi.org/10.1093/bib/bbv027

    Article  CAS  PubMed  Google Scholar 

  9. Ferdous, S., Martin, A.C.R.: AbDb: antibody structure database-a database of PDB-derived antibody structures. Database 2018, 1–9 (2018). https://doi.org/10.1093/database/bay040

  10. Fout, A., Byrd, J., Shariat, B., Ben-Hur, A.: Protein interface prediction using graph convolutional networks. In: Conference on Neural Information Processing Systems, pp. 6531–6540 (2017)

    Google Scholar 

  11. Guo, L., Wang, Y., Xu, X., Cheng, K.K., Long, Y., Xu, J., Li, S., Dong, J.: DeepPSP: a global-local information-based deep neural network for the prediction of protein phosphorylation sites. J. Proteome Res. 20(1), 346–356 (2021). https://doi.org/10.1021/acs.jproteome.0c00431

    Article  CAS  PubMed  Google Scholar 

  12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  CAS  Google Scholar 

  13. Hu, D., et al.: Effective optimization of antibody affinity by phage display integrated with high-throughput DNA synthesis and sequencing technologies. PLoS ONE 10(6), 1–17 (2015). https://doi.org/10.1371/journal.pone.0129125

  14. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2020). https://doi.org/10.1109/TPAMI.2019.2913372

    Article  PubMed  Google Scholar 

  15. Hu, J., Li, Y., Zhang, M., Yang, X., Shen, H.B., Yu, D.J.: Predicting protein-DNA binding residues by weightedly combining sequence-based features and boosting multiple SVMs. IEEE/ACM Trans. Comput. Biol. Bioinf. 14(6), 1389–1398 (2017). https://doi.org/10.1109/TCBB.2016.2616469

    Article  CAS  Google Scholar 

  16. Karimi, M., Wu, D., Wang, Z., Shen, Y.: DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks. Bioinformatics 35(18), 3329–3338 (2019). https://doi.org/10.1093/bioinformatics/btz111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Klausen, M.S., et al.: NetSurfP-2.0: improved prediction of protein structural features by integrated deep learning. Proteins Struct. Funct. Bioinform. 87(6), 520–527 (2019). https://doi.org/10.1002/prot.25674

  18. Krawczyk, K., Baker, T., Shi, J., Deane, C.M.: Antibody i-Patch prediction of the antibody binding site improves rigid local antibody-antigen docking. Protein Eng. Des. Sel. 26(10), 621–629 (2013). https://doi.org/10.1093/protein/gzt043

    Article  CAS  PubMed  Google Scholar 

  19. Kunik, V., Ashkenazi, S., Ofran, Y.: Paratome: an online tool for systematic identification of antigen-binding regions in antibodies based on sequence or structure. Nucleic Acids Res. 40(W1), 521–524 (2012). https://doi.org/10.1093/nar/gks480

    Article  CAS  Google Scholar 

  20. Kunik, V., Peters, B., Ofran, Y.: Structural consensus among antibodies defines the antigen binding site. PLoS Comput. Biol. 8(2), e1002388 (2012). https://doi.org/10.1371/journal.pcbi.1002388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuroda, D., Shirai, H., Jacobson, M.P., Nakamura, H.: Computer-aided antibody design. Protein Eng. Des. Sel. 25(10), 507–521 (2012). https://doi.org/10.1093/protein/gzs024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, L., Wan, J., Zheng, J., Wang, J.: Biomedical event extraction based on GRU integrating attention mechanism. BMC Bioinform. 19(Suppl 9), 93–100 (2018). https://doi.org/10.1186/s12859-018-2275-2

    Article  Google Scholar 

  23. Liberis, E., Velickovic, P., Sormanni, P., Vendruscolo, M., Lio, P.: Parapred: antibody paratope prediction using convolutional and recurrent neural networks. Bioinformatics 34(17), 2944–2950 (2018). https://doi.org/10.1093/bioinformatics/bty305

    Article  CAS  PubMed  Google Scholar 

  24. Lu, R.M., Hwang, Y.C., Liu, I.J., Lee, C.C., Tsai, H.Z., Li, H.J., Wu, H.C.: Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 27(1), 1–30 (2020). https://doi.org/10.1186/s12929-019-0592-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu, S., Li, Y., Wang, F., Nan, X., Zhang, S.: Leveraging sequential and spatial neighbors information by using CNNs linked With GCNs for paratope prediction. IEEE/ACM Trans. Comput. Biol. Bioinform., 1 (2021). https://doi.org/10.1109/TCBB.2021.3083001

  26. Luo, L., Yang, Z., Yang, P., Zhang, Y., Wang, L., Lin, H., Wang, J.: An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition. Bioinformatics 34(8), 1381–1388 (2018). https://doi.org/10.1093/bioinformatics/btx761

    Article  CAS  PubMed  Google Scholar 

  27. McGinnis, S., Madden, T.L.: BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32(Web Server issue), 20–25 (2004). https://doi.org/10.1093/nar/gkh435

  28. Meiler, J., Müller, M., Zeidler, A., Schmäschke, F.: Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks. J. Mol. Model. 7(9), 360–369 (2001). https://doi.org/10.1007/s008940100038

    Article  CAS  Google Scholar 

  29. Pittala, S., Bailey-Kellogg, C.: Learning context-aware structural representations to predict antigen and antibody binding interfaces. Bioinformatics 36(13), 3996–4003 (2020). https://doi.org/10.1093/bioinformatics/btaa263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ragoza, M., Hochuli, J., Idrobo, E., Sunseri, J., Koes, D.R.: Protein-ligand scoring with convolutional neural networks. J. Chem. Inf. Model. 57(4), 942–957 (2017). https://doi.org/10.1021/acs.jcim.6b00740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ren, J., Liu, Q., Ellis, J., Li, J.: Tertiary structure-based prediction of conformational B-cell epitopes through B factors. Bioinformatics 30(12), 264–273 (2014). https://doi.org/10.1093/bioinformatics/btu281

    Article  CAS  Google Scholar 

  32. Schotte, F., et al.: Watching a protein as it functions with 150-ps time-resolved x-ray crystallography. Science 300(5627), 1944–1947 (2003). https://doi.org/10.1126/science.1078797

  33. Skwark, M.J., Raimondi, D., Michel, M., Elofsson, A.: Improved contact predictions using the recognition of protein like contact patterns. PLoS Comput. Biol. 10(11), 1–14 (2014). https://doi.org/10.1371/journal.pcbi.1003889

    Article  CAS  Google Scholar 

  34. Staeheli, L.A., Mitchell, D.: The relationship between precision-recall and ROC curves jesse. In: International Conference on Machine Learning, pp. 233–240 (2006). https://doi.org/10.1145/1143844.1143874

  35. Stave, J.W., Lindpaintner, K.: Antibody and antigen contact residues define epitope and paratope size and structure. J. Immunol. 191(3), 1428–1435 (2013). https://doi.org/10.4049/jimmunol.1203198

  36. Vieira, J.P.A., Moura, R.S.: An analysis of convolutional neural networks for sentence classification. In: Conference on Empirical Methods in Natural Language Processing. vol. 2017-Janua, pp. 1–5 (2017). https://doi.org/10.1109/CLEI.2017.8226381

  37. Wardah, W., Dehzangi, A., Taherzadeh, G., Rashid, M.A., Khan, M.G., Tsunoda, T., Sharma, A.: Predicting protein-peptide binding sites with a deep convolutional neural network. J. Theor. Biol. 496, 110278 (2020). https://doi.org/10.1016/j.jtbi.2020.110278

  38. Yan, K., Wen, J., Xu, Y., Liu, B.: Protein fold recognition based on auto-weighted multi-view graph embedding learning model. IEEE/ACM Trans. Comput. Biol. Bioinform. 5963(c), 1 (2020). https://doi.org/10.1109/tcbb.2020.2991268

  39. Zeng, M., Zhang, F., Wu, F.X., Li, Y., Wang, J., Li, M.: Protein-protein interaction site prediction through combining local and global features with deep neural networks. Bioinformatics 36(4), 1114–1120 (2020). https://doi.org/10.1093/bioinformatics/btz699

    Article  CAS  PubMed  Google Scholar 

  40. Zhou, P., Shi, W., Tian, J., Qi, Z., Li, B., Hao, H., Xu, B.: Attention-based bidirectional long short-term memory networks for relation classification. In: Annual Meeting of the Association for Computational Linguistics, pp. 207–212 (2016). https://doi.org/10.18653/v1/p16-2034

  41. Zhou, Z.H.: Towards atomic resolution structural determination by single-particle cryo-electron microscopy, April 2008. https://doi.org/10.1016/j.sbi.2008.03.004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoutao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, S., Li, Y., Nan, X., Zhang, S. (2021). A Sequence-Based Antibody Paratope Prediction Model Through Combing Local-Global Information and Partner Features. In: Wei, Y., Li, M., Skums, P., Cai, Z. (eds) Bioinformatics Research and Applications. ISBRA 2021. Lecture Notes in Computer Science(), vol 13064. Springer, Cham. https://doi.org/10.1007/978-3-030-91415-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91415-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91414-1

  • Online ISBN: 978-3-030-91415-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics