Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks (2017). arXiv:1711.04340
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)
Google Scholar
Audebert, N., Le Saux, B., Lefèvre, S.: Generative adversarial networks for realistic synthesis of hyperspectral samples. In: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 4359–4362. IEEE (2018)
Google Scholar
Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 6(1), 20–29 (2004)
CrossRef
Google Scholar
Borengasser, M., Hungate, W.S., Watkins, R.: Hyperspectral Remote Sensing: Principles and Applications. CRC Press (2007)
Google Scholar
Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)
CrossRef
Google Scholar
Calimeri, F., Marzullo, A., Stamile, C., Terracina, G.: Biomedical data augmentation using generative adversarial neural networks. In: International Conference on Artificial Neural Networks, pp. 626–634. Springer (2017)
Google Scholar
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)
CrossRef
Google Scholar
Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P.: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016)
CrossRef
Google Scholar
Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(6), 2094–2107 (2014)
CrossRef
Google Scholar
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
MATH
Google Scholar
Douzas, G., Bacao, F.: Effective data generation for imbalanced learning using conditional generative adversarial networks. Expert Syst. Appl. 91, 464–471 (2018)
CrossRef
Google Scholar
Farajzadeh-Zanjani, M., Hallaji, E., Razavi-Far, R., Saif, M.: Generative adversarial dimensionality reduction for diagnosing faults and attacks in cyber-physical systems. Neurocomputing 440, 101–110 (2021)
CrossRef
Google Scholar
Feng, W., Huang, W., Bao, W.: Imbalanced hyperspectral image classification with an adaptive ensemble method based on smote and rotation forest with differentiated sampling rates. IEEE Geosci. Remote Sens. Lett. 16(12), 1879–1883 (2019)
CrossRef
Google Scholar
Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Synthetic data augmentation using gan for improved liver lesion classification. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 289–293. IEEE (2018)
Google Scholar
Goetz, A.F., Vane, G., Solomon, J.E., Rock, B.N.: Imaging spectrometry for earth remote sensing. Science 228(4704), 1147–1153 (1985)
Google Scholar
Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks (2014). arXiv:1406.2661
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of wasserstein gans (2017). arXiv:1704.00028
Haut, J.M., Paoletti, M.E., Plaza, J., Plaza, A., Li, J.: Hyperspectral image classification using random occlusion data augmentation. IEEE Geosci. Remote Sens. Lett. 16(11), 1751–1755 (2019)
CrossRef
Google Scholar
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)
Google Scholar
Heinonen, J.: Lipschitz Functions, pp. 43–48. Springer New York, New York, NY (2001). https://doi.org/10.1007/978-1-4613-0131-8_6
Huang, Y., Jin, Y., Li, Y., Lin, Z.: Towards imbalanced image classification: a generative adversarial network ensemble learning method. IEEE Access 8, 88399–88409 (2020)
CrossRef
Google Scholar
Kantorovich, L., Rubinstein, G.S.: Vestnik leningrad (1958)
Google Scholar
Kotsiantis, S., Kanellopoulos, D., Pintelas, P., et al.: Handling imbalanced datasets: a review. GESTS Int. Trans. Comput. Sci. Eng. 30(1), 25–36 (2006)
Google Scholar
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)
Google Scholar
Landgrebe, D.: Hyperspectral image data analysis. IEEE Signal Process. Mag. 19(1), 17–28 (2002)
CrossRef
Google Scholar
Leevy, J.L., Khoshgoftaar, T.M., Bauder, R.A., Seliya, N.: A survey on addressing high-class imbalance in big data. J. Big Data 5(1), 1–30 (2018)
CrossRef
Google Scholar
Li, J., Du, Q., Li, Y., Li, W.: Hyperspectral image classification with imbalanced data based on orthogonal complement subspace projection. IEEE Trans. Geosci. Remote Sens. 56(7), 3838–3851 (2018)
CrossRef
Google Scholar
Li, W., Chen, C., Zhang, M., Li, H., Du, Q.: Data augmentation for hyperspectral image classification with deep CNN. IEEE Geosci. Remote Sens. Lett. 16(4), 593–597 (2018)
CrossRef
Google Scholar
Lim, S.K., Loo, Y., Tran, N.T., Cheung, N.M., Roig, G., Elovici, Y.: Doping: Generative data augmentation for unsupervised anomaly detection with gan. In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 1122–1127. IEEE (2018)
Google Scholar
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization (2017). arXiv:1711.05101
Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol. 30, p. 3. Citeseer (2013)
Google Scholar
Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders (2015). arXiv:1511.05644
Palade, V.: Class imbalance learning methods for support vector machines. Imbalanced learning: foundations, algorithms, and applications, p. 83. Wiley, Hoboken, NJ, USA (2013)
Google Scholar
Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. Lond., Edinb., Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)
Google Scholar
Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., et al.: Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113, S110–S122 (2009)
CrossRef
Google Scholar
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks (2015). arXiv:1511.06434
Rahman, M.M., Davis, D.N.: Addressing the class imbalance problem in medical datasets. Int. J. Mach. Learn. Comput. 3(2), 224 (2013)
CrossRef
Google Scholar
Razavi-Far, R., Farajzadeh-Zanjani, M., Saif, M.: An integrated class-imbalanced learning scheme for diagnosing bearing defects in induction motors. IEEE Trans. Ind. Inform. 13(6), 2758–2769 (2017)
CrossRef
Google Scholar
Rodarmel, C., Shan, J.: Principal component analysis for hyperspectral image classification. Surv. Land Inf. Sci. 62(2), 115–122 (2002)
Google Scholar
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training gans (2016). arXiv:1606.03498
Schmidhuber, J.: A possibility for implementing curiosity and boredom in model-building neural controllers. In: Proceedings of the International Conference on Simulation of Adaptive Behavior: From Animals to Animats, pp. 222–227 (1991)
Google Scholar
Schmidhuber, J.: Generative adversarial networks are special cases of artificial curiosity (1990) and also closely related to predictability minimization (1991). Neural Netw. 127, 58–66 (2020)
CrossRef
Google Scholar
Shaw, G., Manolakis, D.: Signal processing for hyperspectral image exploitation. IEEE Signal Process. Mag. 19(1), 12–16 (2002)
CrossRef
Google Scholar
Shoemake, K.: Animating rotation with quaternion curves. In: Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques, pp. 245–254 (1985)
Google Scholar
Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)
CrossRef
Google Scholar
Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 843–852 (2017)
Google Scholar
Yu, X., Wu, X., Luo, C., Ren, P.: Deep learning in remote sensing scene classification: a data augmentation enhanced convolutional neural network framework. GIScience Remote Sens. 54(5), 741–758 (2017)
CrossRef
Google Scholar
Zhu, L., Chen, Y., Ghamisi, P., Benediktsson, J.A.: Generative adversarial networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 56(9), 5046–5063 (2018)
CrossRef
Google Scholar