Abstract
Hyperspectral Imaging (HSI), or imaging spectroscopy, is an imaging method with numerous applications. Unlike conventional images, hyperspectral data contain information collected in narrow wavelength intervals at hundreds of bands across the electromagnetic spectrum. The resulting image has a high spatial and spectral resolution allowing for multiple features to be extracted from machine learning applications. However, HSI acquisition is expensive, resulting in low data availability. Especially in the field of remote sensing, hyperspectral datasets only have a limited number of labeled samples, and significant class imbalances are common. Therefore, synthetic samples are useful in complementing existing datasets used in classification tasks. To this end, a modification of a Gradient Penalty Wasserstein Generative Adversarial Network (WGAN-GP) is proposed for conditional generation of realistic hyperspectral data cubes that refrains from commonly used computationally intense model architectures. Dimensionality reduction is introduced as a preprocessing step that further reduces complexity while retaining only important information. The efficacy of the model is proven by verifying the similarity of the synthetic to the real samples, evaluated by comparing their spectral information and their performance on classification outcomes using spatio-spectral models.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks (2017). arXiv:1711.04340
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)
Audebert, N., Le Saux, B., Lefèvre, S.: Generative adversarial networks for realistic synthesis of hyperspectral samples. In: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 4359–4362. IEEE (2018)
Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 6(1), 20–29 (2004)
Borengasser, M., Hungate, W.S., Watkins, R.: Hyperspectral Remote Sensing: Principles and Applications. CRC Press (2007)
Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)
Calimeri, F., Marzullo, A., Stamile, C., Terracina, G.: Biomedical data augmentation using generative adversarial neural networks. In: International Conference on Artificial Neural Networks, pp. 626–634. Springer (2017)
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)
Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P.: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016)
Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(6), 2094–2107 (2014)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
Douzas, G., Bacao, F.: Effective data generation for imbalanced learning using conditional generative adversarial networks. Expert Syst. Appl. 91, 464–471 (2018)
Farajzadeh-Zanjani, M., Hallaji, E., Razavi-Far, R., Saif, M.: Generative adversarial dimensionality reduction for diagnosing faults and attacks in cyber-physical systems. Neurocomputing 440, 101–110 (2021)
Feng, W., Huang, W., Bao, W.: Imbalanced hyperspectral image classification with an adaptive ensemble method based on smote and rotation forest with differentiated sampling rates. IEEE Geosci. Remote Sens. Lett. 16(12), 1879–1883 (2019)
Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Synthetic data augmentation using gan for improved liver lesion classification. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 289–293. IEEE (2018)
Goetz, A.F., Vane, G., Solomon, J.E., Rock, B.N.: Imaging spectrometry for earth remote sensing. Science 228(4704), 1147–1153 (1985)
Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks (2014). arXiv:1406.2661
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of wasserstein gans (2017). arXiv:1704.00028
Haut, J.M., Paoletti, M.E., Plaza, J., Plaza, A., Li, J.: Hyperspectral image classification using random occlusion data augmentation. IEEE Geosci. Remote Sens. Lett. 16(11), 1751–1755 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)
Heinonen, J.: Lipschitz Functions, pp. 43–48. Springer New York, New York, NY (2001). https://doi.org/10.1007/978-1-4613-0131-8_6
Huang, Y., Jin, Y., Li, Y., Lin, Z.: Towards imbalanced image classification: a generative adversarial network ensemble learning method. IEEE Access 8, 88399–88409 (2020)
Kantorovich, L., Rubinstein, G.S.: Vestnik leningrad (1958)
Kotsiantis, S., Kanellopoulos, D., Pintelas, P., et al.: Handling imbalanced datasets: a review. GESTS Int. Trans. Comput. Sci. Eng. 30(1), 25–36 (2006)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)
Landgrebe, D.: Hyperspectral image data analysis. IEEE Signal Process. Mag. 19(1), 17–28 (2002)
Leevy, J.L., Khoshgoftaar, T.M., Bauder, R.A., Seliya, N.: A survey on addressing high-class imbalance in big data. J. Big Data 5(1), 1–30 (2018)
Li, J., Du, Q., Li, Y., Li, W.: Hyperspectral image classification with imbalanced data based on orthogonal complement subspace projection. IEEE Trans. Geosci. Remote Sens. 56(7), 3838–3851 (2018)
Li, W., Chen, C., Zhang, M., Li, H., Du, Q.: Data augmentation for hyperspectral image classification with deep CNN. IEEE Geosci. Remote Sens. Lett. 16(4), 593–597 (2018)
Lim, S.K., Loo, Y., Tran, N.T., Cheung, N.M., Roig, G., Elovici, Y.: Doping: Generative data augmentation for unsupervised anomaly detection with gan. In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 1122–1127. IEEE (2018)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization (2017). arXiv:1711.05101
Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol. 30, p. 3. Citeseer (2013)
Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders (2015). arXiv:1511.05644
Palade, V.: Class imbalance learning methods for support vector machines. Imbalanced learning: foundations, algorithms, and applications, p. 83. Wiley, Hoboken, NJ, USA (2013)
Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. Lond., Edinb., Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)
Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., et al.: Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113, S110–S122 (2009)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks (2015). arXiv:1511.06434
Rahman, M.M., Davis, D.N.: Addressing the class imbalance problem in medical datasets. Int. J. Mach. Learn. Comput. 3(2), 224 (2013)
Razavi-Far, R., Farajzadeh-Zanjani, M., Saif, M.: An integrated class-imbalanced learning scheme for diagnosing bearing defects in induction motors. IEEE Trans. Ind. Inform. 13(6), 2758–2769 (2017)
Rodarmel, C., Shan, J.: Principal component analysis for hyperspectral image classification. Surv. Land Inf. Sci. 62(2), 115–122 (2002)
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training gans (2016). arXiv:1606.03498
Schmidhuber, J.: A possibility for implementing curiosity and boredom in model-building neural controllers. In: Proceedings of the International Conference on Simulation of Adaptive Behavior: From Animals to Animats, pp. 222–227 (1991)
Schmidhuber, J.: Generative adversarial networks are special cases of artificial curiosity (1990) and also closely related to predictability minimization (1991). Neural Netw. 127, 58–66 (2020)
Shaw, G., Manolakis, D.: Signal processing for hyperspectral image exploitation. IEEE Signal Process. Mag. 19(1), 12–16 (2002)
Shoemake, K.: Animating rotation with quaternion curves. In: Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques, pp. 245–254 (1985)
Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)
Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 843–852 (2017)
Yu, X., Wu, X., Luo, C., Ren, P.: Deep learning in remote sensing scene classification: a data augmentation enhanced convolutional neural network framework. GIScience Remote Sens. 54(5), 741–758 (2017)
Zhu, L., Chen, Y., Ghamisi, P., Benediktsson, J.A.: Generative adversarial networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 56(9), 5046–5063 (2018)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Koumoutsou, D., Siolas, G., Charou, E., Stamou, G. (2022). Generative Adversarial Networks for Data Augmentation in Hyperspectral Image Classification. In: Razavi-Far, R., Ruiz-Garcia, A., Palade, V., Schmidhuber, J. (eds) Generative Adversarial Learning: Architectures and Applications. Intelligent Systems Reference Library, vol 217. Springer, Cham. https://doi.org/10.1007/978-3-030-91390-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-91390-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91389-2
Online ISBN: 978-3-030-91390-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)