Abstract
We present a general framework that enables one to model high-order interactions among entangled dynamical systems, via hypergraphs. Several relevant processes can be ideally traced back to the proposed scheme. We shall here solely elaborate on the conditions that seed the spontaneous emergence of patterns, spatially heterogeneous solutions resulting from the many-body interaction between fundamental units. In particular we will focus, on two relevant settings. First, we will assume long-ranged mean field interactions between populations, and then turn to considering diffusive-like couplings. Two applications are presented, respectively to a generalised Volterra system and the Brusselator model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We will adopt the convention of using roman indexes for nodes and greek ones for edges.
- 2.
Let us introduce \(\mathcal {L}^{ sym }=\mathbf {d}^{-1/2}\mathbf {L}^H\mathbf {d}^{-1/2}\), where \(\mathbf {d}\) is the diagonal matrix containing the \(d_i\)’s on the diagonal and \(\mathbf {L}^H\) is the high-order (combinatorial) Laplace matrix defined in[21]. Then \(\mathcal {L}^{ sym }=D_{ij}/\sqrt{d_i d_j} -\delta _{ij}\) from which it immediately follows that \(\mathcal {L}^{ sym }\) is symmetric and nonpositive definite; indeed take any \(\mathbf {x}\in \mathbb {R}^N\setminus \{0\}\), N standing for the dimension of the matrices, then \((\mathbf {x},\mathcal {L}^{ sym } \mathbf {x})=(\mathbf {d}^{-1/2} \mathbf {x},\mathbf {L}^H\mathbf {d}^{-1/2} \mathbf {x})\le 0\) where the last inequality follows from the fact that \(\mathbf {L}^H\) is nonpositive definite. Finally let us observe that \(\mathcal {L}=\mathbf {d}^{-1}\mathbf {L}^H =\mathbf {d}^{-1/2}\mathcal {L}^{ sym }\mathbf {d}^{1/2}\), hence, \(\mathcal {L}\) is similar to \(\mathcal {L}^{ sym }\) and, thus they display the same non-positive spectrum. Moreover this implies also that \(-2\le \Lambda ^{(\alpha )}\le 0\).
References
R. Albert, A. Barabási, Statistical mechanics of complex networks. Rev Mod. Phys. 74(1), 47 (2002)
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)
A.-L. Barabási et al., Network Science (Cambridge University Press, 2016)
V. Latora, V. Nicosia, G. Russo, Complex Networks: Principles, Methods and Applications (Cambridge University Press, 2017)
M.E.J. Newman, Networks: An Introduction (Oxford University Press, 2010)
A.R. Benson, D.F. Gleich, J. Leskovec, Higher-order organization of complex networks. Science 353(6295), 163–166 (2016)
R. Lambiotte, M. Rosvall, I. Scholtes, From networks to optimal higher-order models of complex systems. Nat. Phys. 15, 313 (2019)
S. Fortunato, D. Hric, Community Detection in Networks: A User Guide (Phys, Rep, 2016)
L.-D. Lord, P. Expert, H.M. Fernandes, G. Petri, T.J. Van Hartevelt, F. Vaccarino, G. Deco, F. Turkheimer, M.L. Kringelbach, Insights into brain architectures from the homological scaffolds of functional connectivity networks. Front. Syst. Neurosci. 10, 85 (2016)
G. Petri, P. Expert, F. Turkheimer, R. Carhart-Harris, D. Nutt, P.J. Hellyer, F. Vaccarino, Homological scaffolds of brain functional networks. J. Royal Soc. Interface 11(101), 20140873 (2014)
E. Estrada, G.J. Ross. Centralities in simplicial complexes. applications to protein interaction networks. J. Their. Biol. 438, 46 (2018)
P.A. Abrams, Arguments in favor of higher order interactions. Am. Nat. 121, 887 (1983)
J. Grilli, G. Barabás, M.J. Michalska-Smith, S. Allesina, Higher-order interactions stabilize dynamics in competitive network models. Nature 548(7666), 210 (2017)
T. Carletti, F. Battiston, G. Cencetti, D. Fanelli, Random walks on hypergraphs. Phys. Rev. E 101, 022308 (2020)
A. Patania, G. Petri, F. Vaccarino, The shape of collaborations. EPJ Data Sci. 6, 18 (2017)
C. Berge, Graphs and Hypergraphs (North-Holland Pub. Co. American Elsevier Pub. Co, 1973)
E. Estrada, J.A. Rodríguez-Velázquez. Complex networks as hypergraphs. arXiv preprint physics/0505137 (2005)
G. Ghoshal, V. Zlatić, G. Caldarelli, M.E.J. Newman, Random hypergraphs and their applications. Phys. Rev. E 79(6), 066118 (2009)
G. Ferraz de Arruda, G. Petri, Y. Moreno, Social contagion models on hypergraphs. Phys. Rev. Res. 2, 023032 (2020)
G. Ferraz de Arruda, M. Tizzani, Y. Moreno, Phase transitions and stability of dynamical processes on hypergraphs. arXiv preprint arXiv:2005.10891 (2020)
T. Carletti, D. Fanelli, S. Nicoletti, Dynamical systems on hypergraphs. J. Phys.: Complex. 1(3), 035006 (2020)
A. Krawiecki, Chaotic synchronization on complex hypergraphs. Chaos, Solitons and Fractals 65, 44 (2014)
R. Mulas, C. Kuehn, J. Jost, Coupled dynamics on hypergraphs: Master stability of steady states and synchronization. Phys. Rev. E 101, 062313 (2020)
L. Neuhäuser, A. Mellor, R. Lambiotte, Multibody interactions and nonlinear consensus dynamics on networked systems. Phys. Rev. E 101(3), 032310 (2020)
O.T. Courtney, G. Bianconi, Generalized network structures: the configuration model and the canonical ensemble of simplicial complexes. Phys. Rev. E 93(6), 062311 (2016)
K. Devriendt, P. Van Mieghem, The simplex geometry of graphs. J. Complex Netw. 7(4), 469–490 (2019)
G. Petri, A. Barrat, Simplicial activity driven model. Phys. Rev. Lett. 121(22), 228301 (2018)
Á. Bodó, G.Y. Katona, P.L. Simon, Sis epidemic propagation on hypergraphs. Bull. Math. Biol. 78(4), 713 (2016)
I. Iacopini, G. Petri, A. Barrat, V. Latora, Simplicial models of social contagion. Nat. Commun. 10(1), 2485 (2019)
L.V. Gambuzza, F. Di Patti, L. Gallo , S. Lepri, M. Romance, R. Criado, M. Frasca, V. Latora, S. Boccaletti, The master stability function for synchronization in simplicial complexes. arXiv preprint arXiv:2004.03913v1 (2020)
M. Lucas, G. Cencetti, F. Battiston, A multi-order laplacian framework for the stability of higher-order synchronization. arXiv preprint arXiv: 2003.09734v1 (2020)
A.P. Millán, J.J. Torres, G. Bianconi, Explosive higher-order kuramoto dynamics on simplicial complexes. Phys. Rev. Lett. 124, 218301 (2020)
G. Cencetti, F. Battiston, T. Carletti, D. Fanelli, Generalized patterns from local and non local reactions. Chaos, Solitons and Fractals 134, 109707 (2020)
A.J. McKane, T.J. Newman, Predator-prey cycles from resonant amplification of demographic stochasticity. Phys. Rev. Lett. 94(21), 218102 (2005)
J. Jost, R. Mulas, Hypergraph laplace operators for chemical reaction networks. Adv. Math. 351, 870 (2019)
T.S. Evans, Clique graphs and overlapping communities. J. Stat. Mech.: Theory Exp. 2010(12), P12037 (2010)
D. Zhou, J. Huang, . Schölkopf, Learning with hypergraphs: clustering, classification, and embedding, in Advances in Neural Information Processing Systems (2007), pp. 1601–1608
L. Huang, Q. Chen, Y.-C. Lai, L.M. Pecora, Generic behavior of master-stability functions in coupled nonlinear dynamical systems. Phys. Rev. E 80, 036204 (2009)
L.M. Pecora, T.L. Carroll, Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 2109 (1998)
M. Asllani, D.M. Busiello, T. Carletti, D. Fanelli, G. Planchon, Turing patterns in multiplex networks. Phys. Rev. E 90, 042814 (2014)
M. Asllani, T. Biancalani, D. Fanelli, A.J. McKane, The linear noise approximation for reaction-diffusion systems on networks. Eur. Phys. J. B 86(11), 476 (2013)
M. Asllani, J.D. Challenger, F.S. Pavone, L. Sacconi, D. Fanelli, The theory of pattern formation on directed networks. Nat. Commun. 5(1), 4517 (2014)
H. Nakao, A.S. Mikhailov, Turing patterns in network-organized activator-inhibitor systems. Nat. Phys. 6, 544 (2010)
I. Prigogine, R. Lefever, Symmetry breaking instabilities in dissipative systems. J. Chem. Phys. 48, 1695 (1968)
I. Prigogine, G. Nicolis, Symmetry breaking instabilities in dissipative systems. J. Chem. Phys. 46, 3542 (1967)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Carletti, T., Fanelli, D. (2022). Pattern Formation on Hypergraphs. In: Battiston, F., Petri, G. (eds) Higher-Order Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-91374-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-91374-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91373-1
Online ISBN: 978-3-030-91374-8
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)