Skip to main content

Pattern Formation on Hypergraphs

  • Chapter
  • First Online:
Higher-Order Systems

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

We present a general framework that enables one to model high-order interactions among entangled dynamical systems, via hypergraphs. Several relevant processes can be ideally traced back to the proposed scheme. We shall here solely elaborate on the conditions that seed the spontaneous emergence of patterns, spatially heterogeneous solutions resulting from the many-body interaction between fundamental units. In particular we will focus, on two relevant settings. First, we will assume long-ranged mean field interactions between populations, and then turn to considering diffusive-like couplings. Two applications are presented, respectively to a generalised Volterra system and the Brusselator model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We will adopt the convention of using roman indexes for nodes and greek ones for edges.

  2. 2.

    Let us introduce \(\mathcal {L}^{ sym }=\mathbf {d}^{-1/2}\mathbf {L}^H\mathbf {d}^{-1/2}\), where \(\mathbf {d}\) is the diagonal matrix containing the \(d_i\)’s on the diagonal and \(\mathbf {L}^H\) is the high-order (combinatorial) Laplace matrix defined in[21]. Then \(\mathcal {L}^{ sym }=D_{ij}/\sqrt{d_i d_j} -\delta _{ij}\) from which it immediately follows that \(\mathcal {L}^{ sym }\) is symmetric and nonpositive definite; indeed take any \(\mathbf {x}\in \mathbb {R}^N\setminus \{0\}\), N standing for the dimension of the matrices, then \((\mathbf {x},\mathcal {L}^{ sym } \mathbf {x})=(\mathbf {d}^{-1/2} \mathbf {x},\mathbf {L}^H\mathbf {d}^{-1/2} \mathbf {x})\le 0\) where the last inequality follows from the fact that \(\mathbf {L}^H\) is nonpositive definite. Finally let us observe that \(\mathcal {L}=\mathbf {d}^{-1}\mathbf {L}^H =\mathbf {d}^{-1/2}\mathcal {L}^{ sym }\mathbf {d}^{1/2}\), hence, \(\mathcal {L}\) is similar to \(\mathcal {L}^{ sym }\) and, thus they display the same non-positive spectrum. Moreover this implies also that \(-2\le \Lambda ^{(\alpha )}\le 0\).

References

  1. R. Albert, A. Barabási, Statistical mechanics of complex networks. Rev Mod. Phys. 74(1), 47 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  3. A.-L. Barabási et al., Network Science (Cambridge University Press, 2016)

    Google Scholar 

  4. V. Latora, V. Nicosia, G. Russo, Complex Networks: Principles, Methods and Applications (Cambridge University Press, 2017)

    Google Scholar 

  5. M.E.J. Newman, Networks: An Introduction (Oxford University Press, 2010)

    Google Scholar 

  6. A.R. Benson, D.F. Gleich, J. Leskovec, Higher-order organization of complex networks. Science 353(6295), 163–166 (2016)

    Article  ADS  Google Scholar 

  7. R. Lambiotte, M. Rosvall, I. Scholtes, From networks to optimal higher-order models of complex systems. Nat. Phys. 15, 313 (2019)

    Article  Google Scholar 

  8. S. Fortunato, D. Hric, Community Detection in Networks: A User Guide (Phys, Rep, 2016)

    Google Scholar 

  9. L.-D. Lord, P. Expert, H.M. Fernandes, G. Petri, T.J. Van Hartevelt, F. Vaccarino, G. Deco, F. Turkheimer, M.L. Kringelbach, Insights into brain architectures from the homological scaffolds of functional connectivity networks. Front. Syst. Neurosci. 10, 85 (2016)

    Article  Google Scholar 

  10. G. Petri, P. Expert, F. Turkheimer, R. Carhart-Harris, D. Nutt, P.J. Hellyer, F. Vaccarino, Homological scaffolds of brain functional networks. J. Royal Soc. Interface 11(101), 20140873 (2014)

    Article  Google Scholar 

  11. E. Estrada, G.J. Ross. Centralities in simplicial complexes. applications to protein interaction networks. J. Their. Biol. 438, 46 (2018)

    Google Scholar 

  12. P.A. Abrams, Arguments in favor of higher order interactions. Am. Nat. 121, 887 (1983)

    Article  Google Scholar 

  13. J. Grilli, G. Barabás, M.J. Michalska-Smith, S. Allesina, Higher-order interactions stabilize dynamics in competitive network models. Nature 548(7666), 210 (2017)

    Article  ADS  Google Scholar 

  14. T. Carletti, F. Battiston, G. Cencetti, D. Fanelli, Random walks on hypergraphs. Phys. Rev. E 101, 022308 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Patania, G. Petri, F. Vaccarino, The shape of collaborations. EPJ Data Sci. 6, 18 (2017)

    Article  Google Scholar 

  16. C. Berge, Graphs and Hypergraphs (North-Holland Pub. Co. American Elsevier Pub. Co, 1973)

    Google Scholar 

  17. E. Estrada, J.A. Rodríguez-Velázquez. Complex networks as hypergraphs. arXiv preprint physics/0505137 (2005)

    Google Scholar 

  18. G. Ghoshal, V. Zlatić, G. Caldarelli, M.E.J. Newman, Random hypergraphs and their applications. Phys. Rev. E 79(6), 066118 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. G. Ferraz de Arruda, G. Petri, Y. Moreno, Social contagion models on hypergraphs. Phys. Rev. Res. 2, 023032 (2020)

    Article  Google Scholar 

  20. G. Ferraz de Arruda, M. Tizzani, Y. Moreno, Phase transitions and stability of dynamical processes on hypergraphs. arXiv preprint arXiv:2005.10891 (2020)

  21. T. Carletti, D. Fanelli, S. Nicoletti, Dynamical systems on hypergraphs. J. Phys.: Complex. 1(3), 035006 (2020)

    Google Scholar 

  22. A. Krawiecki, Chaotic synchronization on complex hypergraphs. Chaos, Solitons and Fractals 65, 44 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. R. Mulas, C. Kuehn, J. Jost, Coupled dynamics on hypergraphs: Master stability of steady states and synchronization. Phys. Rev. E 101, 062313 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  24. L. Neuhäuser, A. Mellor, R. Lambiotte, Multibody interactions and nonlinear consensus dynamics on networked systems. Phys. Rev. E 101(3), 032310 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  25. O.T. Courtney, G. Bianconi, Generalized network structures: the configuration model and the canonical ensemble of simplicial complexes. Phys. Rev. E 93(6), 062311 (2016)

    Article  ADS  Google Scholar 

  26. K. Devriendt, P. Van Mieghem, The simplex geometry of graphs. J. Complex Netw. 7(4), 469–490 (2019)

    Article  MathSciNet  Google Scholar 

  27. G. Petri, A. Barrat, Simplicial activity driven model. Phys. Rev. Lett. 121(22), 228301 (2018)

    Article  ADS  Google Scholar 

  28. Á. Bodó, G.Y. Katona, P.L. Simon, Sis epidemic propagation on hypergraphs. Bull. Math. Biol. 78(4), 713 (2016)

    Article  MathSciNet  Google Scholar 

  29. I. Iacopini, G. Petri, A. Barrat, V. Latora, Simplicial models of social contagion. Nat. Commun. 10(1), 2485 (2019)

    Article  ADS  Google Scholar 

  30. L.V. Gambuzza, F. Di Patti, L. Gallo , S. Lepri, M. Romance, R. Criado, M. Frasca, V. Latora, S. Boccaletti, The master stability function for synchronization in simplicial complexes. arXiv preprint arXiv:2004.03913v1 (2020)

  31. M. Lucas, G. Cencetti, F. Battiston, A multi-order laplacian framework for the stability of higher-order synchronization. arXiv preprint arXiv: 2003.09734v1 (2020)

  32. A.P. Millán, J.J. Torres, G. Bianconi, Explosive higher-order kuramoto dynamics on simplicial complexes. Phys. Rev. Lett. 124, 218301 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  33. G. Cencetti, F. Battiston, T. Carletti, D. Fanelli, Generalized patterns from local and non local reactions. Chaos, Solitons and Fractals 134, 109707 (2020)

    Article  MathSciNet  Google Scholar 

  34. A.J. McKane, T.J. Newman, Predator-prey cycles from resonant amplification of demographic stochasticity. Phys. Rev. Lett. 94(21), 218102 (2005)

    Article  ADS  Google Scholar 

  35. J. Jost, R. Mulas, Hypergraph laplace operators for chemical reaction networks. Adv. Math. 351, 870 (2019)

    Article  MathSciNet  Google Scholar 

  36. T.S. Evans, Clique graphs and overlapping communities. J. Stat. Mech.: Theory Exp. 2010(12), P12037 (2010)

    Google Scholar 

  37. D. Zhou, J. Huang, . Schölkopf, Learning with hypergraphs: clustering, classification, and embedding, in Advances in Neural Information Processing Systems (2007), pp. 1601–1608

    Google Scholar 

  38. L. Huang, Q. Chen, Y.-C. Lai, L.M. Pecora, Generic behavior of master-stability functions in coupled nonlinear dynamical systems. Phys. Rev. E 80, 036204 (2009)

    Article  ADS  Google Scholar 

  39. L.M. Pecora, T.L. Carroll, Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 2109 (1998)

    Article  ADS  Google Scholar 

  40. M. Asllani, D.M. Busiello, T. Carletti, D. Fanelli, G. Planchon, Turing patterns in multiplex networks. Phys. Rev. E 90, 042814 (2014)

    Article  ADS  Google Scholar 

  41. M. Asllani, T. Biancalani, D. Fanelli, A.J. McKane, The linear noise approximation for reaction-diffusion systems on networks. Eur. Phys. J. B 86(11), 476 (2013)

    Article  ADS  Google Scholar 

  42. M. Asllani, J.D. Challenger, F.S. Pavone, L. Sacconi, D. Fanelli, The theory of pattern formation on directed networks. Nat. Commun. 5(1), 4517 (2014)

    Article  ADS  Google Scholar 

  43. H. Nakao, A.S. Mikhailov, Turing patterns in network-organized activator-inhibitor systems. Nat. Phys. 6, 544 (2010)

    Article  Google Scholar 

  44. I. Prigogine, R. Lefever, Symmetry breaking instabilities in dissipative systems. J. Chem. Phys. 48, 1695 (1968)

    Article  ADS  Google Scholar 

  45. I. Prigogine, G. Nicolis, Symmetry breaking instabilities in dissipative systems. J. Chem. Phys. 46, 3542 (1967)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timoteo Carletti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carletti, T., Fanelli, D. (2022). Pattern Formation on Hypergraphs. In: Battiston, F., Petri, G. (eds) Higher-Order Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-91374-8_5

Download citation

Publish with us

Policies and ethics