Abstract
As with other arenas of complex systems, the biological world is driven by interactions between actors, parcels, and forces of various kinds. Higher-order interactions between these elements defines the complexity underlying many biological systems, from species interactions, the microbiota, to biomechanics and others. Here we explore higher-order interactions through a discussion of epistasis, a cutting-edge concept in population and evolutionary genetics. We examine the concept’s history and controversies, measure higher-order epistasis operating in a gene encoding an enzyme, and discuss the implications of higher-order interactions for contemporary conversations surrounding genetic modification and other technical challenges that require a more refined understanding of the relationship between genotype and phenotype.
This is a preview of subscription content, access via your institution.
Buying options



References
R.M. May, Will a large complex system be stable? Nature 238, 413–414 (1972)
N.D. Martinez, R.J. Williams, J.A. Dunne, M. Pascual, Diversity, complexity, and persistence in large model ecosystems,in Ecological Networks: Linking Structure to Dynamics in Food Webs (2006), pp. 163–185
U. Dieckmann, R. Law, The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34, 579–612 (1996)
M.M. Mayfield, D.B. Stouffer, Higher-order interactions capture unexplained complexity in diverse communities. Nature Ecol. Evol. 1, 1–7 (2017)
J.M. Levine, J. Bascompte, P.B. Adler, S. Allesina, Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017)
A.D. Letten, D.B. Stouffer, The mechanistic basis for higher-order interactions and non-additivity in competitive communities. Ecol. Lett. 22, 423–436 (2019)
E.L. Preisser, D.I. Bolnick, M.F. Benard, Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86, 501–509 (2005)
M. Pascual, J.A. Dunne, J.A. Dunne, Ecological Networks: Linking Structure to Dynamics in Food Webs (Oxford University Press, 2006)
H. Mickalide, S. Kuehn, Higher-order interaction between species inhibits bacterial invasion of a phototroph-predator microbial community. Cell Syst. 9, 521–533 (2019)
R.C. Cobb, R.K. Meentemeyer, D.M. Rizzo, Apparent competition in canopy trees determined by pathogen transmission rather than susceptibility. Ecology 91, 327–333 (2010)
A. Sanchez-Gorostiaga, D. Bajić, M.L. Osborne, J.F. Poyatos, A. Sanchez, High-order interactions distort the functional landscape of microbial consortia. PLoS Biol. 17, e3000550 (2019)
A.L. Gould, V. Zhang, L. Lamberti, E.W. Jones, B. Obadia, N. Korasidis, A. Gavryushkin, J.M. Carlson, N. Beerenwinkel, W.B. Ludington, Microbiome interactions shape host fitness. Proc. Natl. Acad. Sci. 115, E11951–E11960 (2018)
Y. Senay, G. John, S.A. Knutie, C.B. Ogbunugafor, Deconstructing higher-order interactions in the microbiota: a theoretical examination, BioRxiv (2019) 647156
E. Tekin, C. White, T.M. Kang, N. Singh, M. Cruz-Loya, R. Damoiseaux, V.M. Savage, P.J. Yeh, Prevalence and patterns of higher-order drug interactions in Escherichia coli. NPJ Syst. Biol. Appl. 4, 1–10 (2018)
E. Tekin, P.J. Yeh, V.M. Savage, General form for interaction measures and framework for deriving higher-order emergent effects. Front. Ecol. Evol. 6, 166 (2018)
E. Tekin, V.M. Savage, P.J. Yeh, Measuring higher-order drug interactions: a review of recent approaches. Curr. Opinion Syst. Biol. 4, 16–23 (2017)
K.M. Evans, O. Larouche, S.-J. Watson, S. Farina, M.L. Habegger, M. Friedman, Integration drives rapid phenotypic evolution in flatfishes. Proc. Natl. Acad. Sci. 118 (2021)
D.L. Des Marais, R.F. Guerrero, J.R. Lasky, S.V. Scarpino, Topological features of a gene co-expression network predict patterns of natural diversity in environmental response, Proc. Royal Soc. B: Biol. Sci. 284, 20170914 (2017)
W. Bateson, E.R. Saunders, Reports to the Evolution Committee of the Royal Society: ReportsI-V, 1902–09, Royal Society (1910)
W. Weinberg, Weitere Beitrage zur Theorie der Vererbung. Arch. Rass. Ges. Biol. 7, 35–49 (1910)
W. Bateson, Mendel’s Principles of Heredity Cambridge University Press, März 1909; 2nd Impr. 3 (1909) 1913
M.L. Richmond, Women in the early history of genetics: William Bateson and the Newnham College Mendelians, 1900–1910. Isis 92, 55–90 (2001)
M. Wheldale, The inheritance of flower colour in Antirrhinum majus. Proc. Royal Soc. Londn. Ser. B, Containing Papers of a Biological Character 79, 288–305 (1907)
P.C. Phillips, The language of gene interaction. Genetics 149, 1167–1171 (1998)
W.B. Provine, The Origins of Theoretical Population Genetics (University of Chicago Press, 2020)
R.A. Fisher, 009: The Correlation Between Relatives on the Supposition of Mendelian Inheritance (1918)
U. Wolf, Identical mutations and phenotypic variation. Hum. Genet. 100, 305–321 (1997)
J.B. Wolf, E.D. Brodie, M.J. Wade, Epistasis and the Evolutionary Process (Oxford University Press, 2000)
D. Posthuma, A.L. Beem, E.J. De Geus, G.C.M. Van Baal, J.B. Von Hjelmborg, I. Iachine, D.I. Boomsma, Theory and practice in quantitative genetics. Twin Res. Human Genet. 6, 361–376 (2003)
S.B. Carroll, Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134, 25–36 (2008)
H.E. Hoekstra, J.A. Coyne, The locus of evolution: evo devo and the genetics of adaptation. Evolution: Int. J. Organic Evol. 61, 995–1016 (2007)
B.C. Daniels, H. Kim, D. Moore, S. Zhou, H.B. Smith, B. Karas, S.A. Kauffman, S.I. Walker, Criticality distinguishes the ensemble of biological regulatory networks. Phys. Rev. Lett. 121, 138102 (2018)
N. Barkai, S. Leibler, Robustness in simple biochemical networks. Nature 387, 913–917 (1997)
R. Cheong, A. Rhee, C.J. Wang, I. Nemenman, A. Levchenko, Information transduction capacity of noisy biochemical signaling networks. Science 334, 354–358 (2011)
R.E. Lenski, J.E. Barrick, C. Ofria, S. Levin, Balancing robustness and evolvability, PLoS Biol. 4, e428 (2006)
A. Wagner, D.A. Fell, The small world inside large metabolic networks. Proc. Royal Soc. Londn. Ser. B: Biol. Sci. 268, 1803–1810 (2001)
S.N. Dorogovtsev, J.F. Mendes, Evolution of networks. Adv. Phys. 51, 1079–1187 (2002)
P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality: an explanation of the 1/f noise, Phys. Rev. Lett. 59, 381–384 (1987). https://doi.org/10.1103/PhysRevLett.59.381
R.A. Fisher, The Genetical Theory of Natural Selection: A Complete Variorum Edition (OUP Oxford, 1930)
R.T. Hietpas, C. Bank, J.D. Jensen, D.N. Bolon, Shifting fitness landscapes in response to altered environments. Evolution 67, 3512–3522 (2013)
J.B.S. Haldane, The cost of natural selection. J. Genet. 55, 511 (1957)
E.A. Boyle, Y.I. Li, J.K. Pritchard, An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017)
T.B. Sackton, D.L. Hartl, Genotypic Context and epistasis in individuals and populations. Cell 166, 279–287 (2016). https://doi.org/10.1016/j.cell.2016.06.047
D.M. Weinreich, Y. Lan, C.S. Wylie, R.B. Heckendorn, Should evolutionary geneticists worry about higher-order epistasis? Curr. Opin. Genet. Dev. 23, 700–707 (2013). https://doi.org/10.1016/j.gde.2013.10.007
Z.R. Sailer, M.J. Harms, Uninterpretable Interactions: Epistasis as Uncertainty. BioRxiv 378489 (2018)
Z.R. Sailer, M.J. Harms, Detecting high-order epistasis in nonlinear genotype-phenotype maps. Genetics 205, 1079–1088 (2017)
J. Otwinowski, J.B. Plotkin, Inferring fitness landscapes by regression produces biased estimates of epistasis. PNAS 111, E2301–E2309 (2014). https://doi.org/10.1073/pnas.1400849111
J. Otwinowski, D.M. McCandlish, J.B. Plotkin, Inferring the shape of global epistasis. PNAS 115, E7550–E7558 (2018). https://doi.org/10.1073/pnas.1804015115
K. Crona, Rank orders and signed interactions in evolutionary biology. Elife. 9, e51004 (2020)
L. Crawford, P. Zeng, S. Mukherjee, X. Zhou, Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits. PLoS Genet. 13, e1006869 (2017)
Y. Jiang, J.C. Reif, Modeling epistasis in genomic selection. Genetics 201, 759–768 (2015)
P. Demetci, W. Cheng, G. Darnell, X. Zhou, S. Ramachandran, L. Crawford, Multi-scale Inference of Genetic Trait Architecture using Biologically Annotated Neural Networks, BioRxiv 2020–07 (2021)
J.A.G.M. de Visser, J. Krug, Empirical fitness landscapes and the predictability of evolution. Nat. Rev. Genet. 15, 480–490 (2014). https://doi.org/10.1038/nrg3744
F.J. Poelwijk, D.J. Kiviet, D.M. Weinreich, S.J. Tans, Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445, 383–386 (2007). https://doi.org/10.1038/nature05451
J.V. Rodrigues, S. Bershtein, A. Li, E.R. Lozovsky, D.L. Hartl, E.I. Shakhnovich, Biophysical principles predict fitness landscapes of drug resistance. Proc. Natl. Acad. Sci. U.S.A. 113, E1470-1478 (2016). https://doi.org/10.1073/pnas.1601441113
R.F. Guerrero, S.V. Scarpino, J.V. Rodrigues, D.L. Hartl, C.B. Ogbunugafor, Proteostasis environment shapes higher-order epistasis operating on antibiotic resistance. Genetics 212, 565–575 (2019). https://doi.org/10.1534/genetics.119.302138
S. Gottesman, S. Wickner, M.R. Maurizi, Protein quality control: triage by chaperones and proteases. Genes Dev. 11, 815–823 (1997)
F.J. Poelwijk, V. Krishna, R. Ranganathan, The context-dependence of mutations: a linkage of formalisms. PLoS Comput. Biol. 12, e1004771 (2016)
D.M. Weinreich, Y. Lan, J. Jaffe, R.B. Heckendorn, The influence of higher-order epistasis on biological fitness landscape topography. J. Stat. Phys. 172, 208–225 (2018)
E.R. Lozovsky, R.F. Daniels, G.D. Heffernan, D.P. Jacobus, D.L. Hartl, Relevance of higher-order epistasis in drug resistance. Mol. Biol. Evol. 38, 142–151 (2021). https://doi.org/10.1093/molbev/msaa196
V.A. Meszaros, M.D. Miller-Dickson, C.B. Ogbunugafor, Lexical Landscapes as large in silico data for examining advanced properties of fitness landscapes. PLoS ONE 14, e0220891 (2019). https://doi.org/10.1371/journal.pone.0220891
C.B. Ogbunugafor, The mutation effect reaction norm (mu‐rn) highlights environmentally dependent mutation effects and epistatic interactions. Evolution (2022). https://doi.org/10.1111/evo.14428
S.K. Remold, R.E. Lenski, Pervasive joint influence of epistasis and plasticity on mutational effects in Escherichia coli. Nat. Genet. 36, 423 (2004)
K.M. Flynn, T.F. Cooper, F.B. Moore, V.S. Cooper, The environment affects epistatic interactions to alter the topology of an empirical fitness landscape. PLoS Genet 9, e1003426 (2013)
A.L. Firth, T. Menon, G.S. Parker, S.J. Qualls, B.M. Lewis, E. Ke, C.T. Dargitz, R. Wright, A. Khanna, F.H. Gage, I.M. Verma, Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep. 12, 1385–1390 (2015). https://doi.org/10.1016/j.celrep.2015.07.062
C. Long, L. Amoasii, A.A. Mireault, J.R. McAnally, H. Li, E. Sanchez-Ortiz, S. Bhattacharyya, J.M. Shelton, R. Bassel-Duby, E.N. Olson, Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351, 400–403 (2016). https://doi.org/10.1126/science.aad5725
B. Maher, Personal genomes: the case of the missing heritability. Nature 456, 18–21 (2008). https://doi.org/10.1038/456018a
T.A. Manolio, F.S. Collins, N.J. Cox, D.B. Goldstein, L.A. Hindorff, D.J. Hunter, M.I. McCarthy, E.M. Ramos, L.R. Cardon, A. Chakravarti, J.H. Cho, A.E. Guttmacher, A. Kong, L. Kruglyak, E. Mardis, C.N. Rotimi, M. Slatkin, D. Valle, A.S. Whittemore, M. Boehnke, A.G. Clark, E.E. Eichler, G. Gibson, J.L. Haines, T.F.C. Mackay, S.A. McCarroll, P.M. Visscher, Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009). https://doi.org/10.1038/nature08494
W. Huang, T.F.C. Mackay, The genetic architecture of quantitative traits cannot be inferred from variance component analysis. PLoS Genet. 12, e1006421 (2016). https://doi.org/10.1371/journal.pgen.1006421
J.R. Stinchcombe, H.E. Hoekstra, Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity (Edinb). 100, 158–170 (2008). https://doi.org/10.1038/sj.hdy.6800937
A. Mäki-Tanila, W.G. Hill, Influence of gene interaction on complex trait variation with multilocus models. Genetics 198, 355–367 (2014). https://doi.org/10.1534/genetics.114.165282
L. Hébert-Dufresne, S.V. Scarpino, J.-G. Young, Macroscopic patterns of interacting contagions are indistinguishable from social reinforcement. Nat Phys. 16, 426–431 (2020). https://doi.org/10.1038/s41567-020-0791-2
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Brandon Ogbunugafor, C., Scarpino, S.V. (2022). Higher-Order Interactions in Biology: The Curious Case of Epistasis. In: Battiston, F., Petri, G. (eds) Higher-Order Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-91374-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-91374-8_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91373-1
Online ISBN: 978-3-030-91374-8
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)