Skip to main content

Topological Data Analysis of Spatial Systems

  • Chapter
  • First Online:
Higher-Order Systems

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

In this chapter, we discuss applications of topological data analysis (TDA) to spatial systems. We briefly review a recently proposed level-set construction of filtered simplicial complexes, and we then examine persistent homology in two cases studies: street networks in Shanghai and anomalies in the spread of COVID-19 infections. We then summarize our results and provide an outlook on TDA in spatial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This case study is related to an example in [14].

  2. 2.

    This part of Laoximen has been slated for redevelopment since 2017 [23]. When we obtained these street maps in 2019, residents were fighting redevelopment efforts and development had not yet begun [24]. It remains to be seen how this part of our Laoximen street map will change as a result of redevelopment.

  3. 3.

    See [33] for a study of geographic patterns in COVID-19 case rates and COVID-19 vaccination rates that uses PH in a different way.

  4. 4.

    We are concerned with local maxima. By contrast, the Centers for Disease Control and Prevention (CDC) defines COVID-19 ‘hotspots’ using an absolute threshold for the number of cases and criteria that are related to the temporal increase in the number of cases [37].

References

  1. M. Barthelemy, Morphogenesis of Spatial Networks (Springer International Publishing, Cham, Switzerland, 2018)

    Book  Google Scholar 

  2. M.E.J. Newman, Networks, 2nd edn. (Oxford University Press, Oxford, UK, 2018)

    Book  Google Scholar 

  3. M. Buchet, Y. Hiraoka, I. Obayashi, Persistent homology and materials informatics, in Nanoinformatics ed. by I. Tanaka (Springer-Verlag, Heidelberg, Germany, 2018), pp. 75–95

    Google Scholar 

  4. L. Papadopoulos, M.A. Porter, K.E. Daniels, D.S. Bassett, Network analysis of particles and grains. J. Complex Netw. 6(4), 485–565 (2018)

    Article  MathSciNet  Google Scholar 

  5. A.E. Sizemore, J.E. Phillips-Cremins, R. Ghrist, D.S. Bassett, The importance of the whole: topological data analysis for the network neuroscientist. Netw. Neurosci. 3(3), 656–673 (2019)

    Article  Google Scholar 

  6. H. Ronellenfitsch, E. Katifori, Global optimization, local adaptation, and the role of growth in distribution networks. Phys. Rev. Lett. 117(13), 138301 (2016)

    Google Scholar 

  7. H.M. Byrne, H.A. Harrington, R. Muschel, G. Reinert, B.J. Stolz, U. Tillmann, Topology characterises tumour vasculature. Math. Today 55(5), 206–210 (2019)

    MathSciNet  Google Scholar 

  8. C.M. Topaz, L. Ziegelmeier, T. Halverson, Topological data analysis of biological aggregation models. PLOS ONE, 10(5), e0126383 (2015)

    Google Scholar 

  9. L. Speidel, H.A. Harrington, S.J. Chapman, M.A. Porter, Topological data analysis of continuum percolation with disks. Phys. Rev. E 98(1), 012318 (2018)

    Google Scholar 

  10. P.S.P. Ignacio, I.K. Darcy, Tracing patterns and shapes in remittance and migration networks via persistent homology. Euro. Phys. J. Data Sci. 8, 1 (2019)

    Google Scholar 

  11. M. Feng, M.A. Porter, Persistent homology of geospatial data: a case study with voting. SIAM Rev. 63(1), 67–99 (2021)

    Article  MathSciNet  Google Scholar 

  12. N. Otter, M.A. Porter, U. Tillmann, P. Grindrod, H.A. Harrington, A roadmap for the computation of persistent homology. Euro. Phys. J. Data Sci. 6, 17 (2017)

    Google Scholar 

  13. G. Carlsson, Topological methods for data modelling. Nat. Rev. Phys. 2, 697–707 (2020)

    Google Scholar 

  14. M. Feng, M.A. Porter, Spatial applications of topological data analysis: cities, snowflakes, random structures, and spiders spinning under the influence. Phys. Rev. Res. 2, 033426 (2020)

    Google Scholar 

  15. L. Kanari, P. Dłotko, M. Scolamiero, R. Levi, J. Shillcock, K. Hess, H. Markram, A topological representation of branching neuronal morphologies. Neuroinformatics 16(1), 3–13 (2018)

    Article  Google Scholar 

  16. H. Ronellenfitsch, J. Lasser, D.C. Daly, E. Katifori, Topological phenotypes constitute a new dimension in the phenotypic space of leaf venation networks. PLOS Comput. Biol. 11(12), e1004680 (2015)

    Google Scholar 

  17. B.J. Stolz, J. Tanner, H.A. Harrington, V. Nanda, Geometric anomaly detection in data. Proc. Nat. Acad. Sci. U.S.A. 117(33), 19664–19669 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Smith, V. Zavala, The Euler characteristic: a general topological descriptor for complex data (2021). arXiv:2103.03144

  19. S.J. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer-Verlag, Heidelberg, Germany, 2003)

    Google Scholar 

  20. Y.M. Yeung, Sung Y.-w. (eds.), Shanghai: Transformation and Modernization Under China’s Open Policy (Chinese University of Hong Kong Press, Hong Kong, 1996)

    Google Scholar 

  21. G. Boeing, OSMnx: new methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 65, 126–139 (2017)

    Google Scholar 

  22. G. Boeing, Urban spatial order: street network orientation, configuration, and entropy. Appl. Netw. Sci. 4(1), 67 (2019)

    Google Scholar 

  23. T. Kanagaratnam, K. Knyazeva, Demolition of Laoximen: Shanghai’s best link to its pre-colonial past may soon be gone. SupChina. https://supchina.com/2017/12/13/demolition-of-laoximen-shanghai/ (13 December 2017)

  24. M. Walsh, In old Shanghai, a last spring festival before the bulldozers. https://www.sixthtone.com/news/1003537/in-old-shanghai%2C-a-last-spring-festival-before-the-bulldozers (4 February 2019)

  25. Q. Guan, Lilong housing, a traditional settlement form. M. Arch. Thesis, McGill University (1996). https://www.mcgill.ca/mchg/student/lilong

  26. B.X. Sang, Pudong: another special economic zone in China?—An analysis of the special regulations and policy for Shanghai’s Pudong New Area. Northwest. J. Int. Law Bus. 14(1), 130–160 (1993)

    Google Scholar 

  27. World Health Organization. Coronavirus disease (COVID-19) pandemic. https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (19 March 2021), 2021

  28. A. Vespignani, H. Tian, C. Dye, J.O. Lloyd-Smith, R.M. Eggo, M. Shrestha, S.V. Scarpino, B. Gutierrez, M.U.G. Kraemer, J. Wu, K. Leung, G.M. Leung, Modelling COVID-19. Nat. Rev. Phys. 2, 279–281 (2020)

    Google Scholar 

  29. M. Soliman, V. Lyubchich, Y.R. Gel, Ensemble forecasting of the Zika space-time spread with topological data analysis. Environmetrics 31(7), e2629 (2020)

    Google Scholar 

  30. D. Taylor, F. Klimm, H. A. Harrington, M. Kramár, K. Mischaikow, M.A. Porter, P.J. Mucha, Topological data analysis of contagion maps for examining spreading processes on networks. Nat. Commun. 6, 7723 (2015)

    Google Scholar 

  31. G. Bobashev, I. Segovia-Dominguez, Y.R. Gel, J. Rineer, S. Rhea, H. Sui, Geospatial forecasting of COVID-19 spread and risk of reaching hospital capacity. SIGSPATIAL Spec. 12(2), 25–32 (2020)

    Article  Google Scholar 

  32. S. Zhu, A. Bukharin, L. Xie, M. Santillana, S. Yang, Y. Xie. High-resolution spatio-temporal model for county-level COVID-19 activity in the U.S., ACM Trans. Manage. Inf. Syst. 12(4), 33 (2021)

    Google Scholar 

  33. A. Hickok, D. Needell, M.A. Porter, Analysis of spatiotemporal anomalies using persistent homology: case studies with COVID-19 data (2021). arXiv:2107.09188

  34. USA Facts. US COVID-19 cases and deaths by state. https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/ (1 July 2020)

  35. Los Angeles GeoHub. COVID19 by neighborhood. https://geohub.lacity.org/datasets/covid19-by-neighborhood/about (3 June 2020)

  36. California Open Data Portal. California county boundaries. https://data.ca.gov/dataset/ca-geographic-boundaries/resource/b0007416-a325-4777-9295-368ea6b710e6 (10 September 2019), 2019

  37. A.M. Oster et al., Trends in number and distribution of COVID-19 hotspot counties—United States, March 8–July 15, 2020. MMWR Morb. Mortal. Wkly. Rep. 69, 1127–1132 (2020)

    Google Scholar 

  38. M.T. Gastner, M.E.J. Newman, Diffusion-based method for producing density-equalizing maps. Proc. Nat. Acad. Sci. U.S.A. 101(20), 7499–7504 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  39. A. Nellis, The color of justice: racial and ethnic disparity in state prisons. https://www.sentencingproject.org/publications/color-of-justice-racial-and-ethnic-disparity-in-state-prisons/ (14 June 2016)

  40. C.A. Nguyen, M.E. Chernew, I. Ostrer, N.D. Beaulieu, Comparison of healthcare delivery systems in low- and high-income communities. Am. J. Accountable Care 7(4), 11–18 (2019)

    Google Scholar 

Download references

Acknowledgements

We thank the Los Angeles County Department of Public Health for providing the LA data on COVID-19, and we thank Federico Battiston and Giovanni Petri for the invitation to write this chapter. We thank Deanna Needell for helpful comments. We acknowledge support from the National Science Foundation (grant number 1922952) through the Algorithms for Threat Detection (ATD) program. MAP also acknowledges support from the National Science Foundation (grant number DMS-2027438) through the RAPID program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mason A. Porter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, M., Hickok, A., Porter, M.A. (2022). Topological Data Analysis of Spatial Systems. In: Battiston, F., Petri, G. (eds) Higher-Order Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-91374-8_16

Download citation

Publish with us

Policies and ethics