Abstract
We consider four variants of the RSA cryptosystem with an RSA modulus \(N=pq\) where the public exponent e and the private exponent d satisfy an equation of the form \(ed-k\left( p^2-1\right) \left( q^2-1\right) =1\). We show that, if the prime numbers p and q share most significant bits, that is, if the prime difference \(|p-q|\) is sufficiently small, then one can solve the equation for larger values of d, and factor the RSA modulus, which makes the systems insecure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key \(d\) less than \(N^{0.292}\). In: Advances in Cryptology-Eurocrypt 1999, Lecture Notes in Computer Science, vol. 1592, Springer-Verlag, pp. 1–11 (1999)
Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Notices Amer. Math. Soc. 46(2), 203–213 (1999)
Bunder, M., Nitaj, A., Susilo, W., Tonien, J.: A new attack on three variants of the RSA cryptosystem. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9723, pp. 258–268. Springer, Cham (2016)
Bunder, M., Nitaj, A., Susilo, W., Tonien, J.: A generalized attack on RSA type cryptosystems. Theoretical Comput. Sci. 704, 74–81 (2017)
Castagnos, G.: An efficient probabilistic public-key cryptosystem over quadratic field quotients, 2007, Finite Fields and Their Applications, 13(3–13), p. 563–576 (2007). http://www.math.u-bordeaux1.fr/~gcastagn/publi/crypto_quad.pdf
Collins, T., Hopkins, D., Langford, S., Sabin, M.: Public key cryptographic apparatus and Method. US Patent 5,848,159, Jan 1997
Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Crypt. 10(4), 233–260 (1997)
Elkamchouchi, H., Elshenawy, K., Shaban, H.: Extended RSA cryptosystem and digital signature schemes in the domain of Gaussian integers. In: Proceedings of the 8th International Conference on Communication Systems, pp. 91–95 (2002)
Hardy, G.H., Wright, E.M.: An Introduction to Theory of Numbers, 5th edn. The Clarendon Press, Oxford University Press, New York (1979)
Hinek, M.: Cryptanalysis of RSA and Its Variants. Chapman & Hall/CRC, Cryptography and Network Security Series, Boca Raton (2009)
Howgrave-Graham, N.: Finding small roots of univariate modular equations revisited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 131–142. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024458
Kuwakado, H., Koyama, K. Tsuruoka, Y.: A new RSA-type scheme based on singular cubic curves \(y^2=x^3+bx^2~({\rm mod}\; n)\). IEICE Transactions on Fundamentals, vol. E78-A, pp. 27–33 (1995)
Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 513–534 (1982)
May, A.: New RSA Vulnerabilities Using Lattice Reduction Methods, PhD Thesis, University of Paderborn (2003)
Nitaj, A., Pan, Y., Tonien, J.: A generalized attack on some variants of the RSA cryptosystem. In: Cid, C., Jacobson, M., Jr. (eds.) SAC 2018. LNCS, vol. 11349, pp. 421–433. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-10970-7_19
Rivest, R., Shamir, A., Adleman, L.: A Method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
Smith, P.J., Lennon, G.J.J.: LUC: A New Public-Key Cryptosystem, pp. 103–117. Elsevier Science Publishers, Ninth IFIP Symposium on Computer Science Security (1993)
Peng, L., Hu, L., Lu, Y., Wei, H.: An improved analysis on three variants of the RSA cryptosystem. In: Chen, K., Lin, D., Yung, M. (eds.) Inscrypt 2016. LNCS, vol. 10143, pp. 140–149. Springer, Cham (2017)
Quisquater, J.J., Couvreur, C.: Fast decipherment algorithm for RSA public key cryptosystem. Electron. Lett. 18, 905–907 (1982)
de Weger, B.: Cryptanalysis of RSA with small prime difference. Appl. Algebra Eng. Commun. Comput. 13(1), 17–28 (2002)
Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. Theory 36, 553–558 (1990)
Zheng, M., Kunihiro, N., Hu, H.: Cryptanalysis of RSA Variants with Modified Euler Quotient. In: Joux A., Nitaj A., Rachidi T. (eds.) Progress in Cryptology-AFRICACRYPT 2018. AFRICACRYPT 2018. Lecture Notes in Computer Science, vol. 10831. Springer, Cham (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Cherkaoui-Semmouni, M., Nitaj, A., Susilo, W., Tonien, J. (2021). Cryptanalysis of RSA Variants with Primes Sharing Most Significant Bits. In: Liu, J.K., Katsikas, S., Meng, W., Susilo, W., Intan, R. (eds) Information Security. ISC 2021. Lecture Notes in Computer Science(), vol 13118. Springer, Cham. https://doi.org/10.1007/978-3-030-91356-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-91356-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91355-7
Online ISBN: 978-3-030-91356-4
eBook Packages: Computer ScienceComputer Science (R0)