Skip to main content

Cryptanalysis of RSA Variants with Primes Sharing Most Significant Bits

  • Conference paper
  • First Online:
Information Security (ISC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13118))

Included in the following conference series:

Abstract

We consider four variants of the RSA cryptosystem with an RSA modulus \(N=pq\) where the public exponent e and the private exponent d satisfy an equation of the form \(ed-k\left( p^2-1\right) \left( q^2-1\right) =1\). We show that, if the prime numbers p and q share most significant bits, that is, if the prime difference \(|p-q|\) is sufficiently small, then one can solve the equation for larger values of d, and factor the RSA modulus, which makes the systems insecure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key \(d\) less than \(N^{0.292}\). In: Advances in Cryptology-Eurocrypt 1999, Lecture Notes in Computer Science, vol. 1592, Springer-Verlag, pp. 1–11 (1999)

    Google Scholar 

  2. Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Notices Amer. Math. Soc. 46(2), 203–213 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Bunder, M., Nitaj, A., Susilo, W., Tonien, J.: A new attack on three variants of the RSA cryptosystem. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9723, pp. 258–268. Springer, Cham (2016)

    Google Scholar 

  4. Bunder, M., Nitaj, A., Susilo, W., Tonien, J.: A generalized attack on RSA type cryptosystems. Theoretical Comput. Sci. 704, 74–81 (2017)

    Article  MathSciNet  Google Scholar 

  5. Castagnos, G.: An efficient probabilistic public-key cryptosystem over quadratic field quotients, 2007, Finite Fields and Their Applications, 13(3–13), p. 563–576 (2007). http://www.math.u-bordeaux1.fr/~gcastagn/publi/crypto_quad.pdf

  6. Collins, T., Hopkins, D., Langford, S., Sabin, M.: Public key cryptographic apparatus and Method. US Patent 5,848,159, Jan 1997

    Google Scholar 

  7. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Crypt. 10(4), 233–260 (1997)

    Article  MathSciNet  Google Scholar 

  8. Elkamchouchi, H., Elshenawy, K., Shaban, H.: Extended RSA cryptosystem and digital signature schemes in the domain of Gaussian integers. In: Proceedings of the 8th International Conference on Communication Systems, pp. 91–95 (2002)

    Google Scholar 

  9. Hardy, G.H., Wright, E.M.: An Introduction to Theory of Numbers, 5th edn. The Clarendon Press, Oxford University Press, New York (1979)

    MATH  Google Scholar 

  10. Hinek, M.: Cryptanalysis of RSA and Its Variants. Chapman & Hall/CRC, Cryptography and Network Security Series, Boca Raton (2009)

    Book  Google Scholar 

  11. Howgrave-Graham, N.: Finding small roots of univariate modular equations revisited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 131–142. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024458

    Chapter  Google Scholar 

  12. Kuwakado, H., Koyama, K. Tsuruoka, Y.: A new RSA-type scheme based on singular cubic curves \(y^2=x^3+bx^2~({\rm mod}\; n)\). IEICE Transactions on Fundamentals, vol. E78-A, pp. 27–33 (1995)

    Google Scholar 

  13. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 513–534 (1982)

    Article  MathSciNet  Google Scholar 

  14. May, A.: New RSA Vulnerabilities Using Lattice Reduction Methods, PhD Thesis, University of Paderborn (2003)

    Google Scholar 

  15. Nitaj, A., Pan, Y., Tonien, J.: A generalized attack on some variants of the RSA cryptosystem. In: Cid, C., Jacobson, M., Jr. (eds.) SAC 2018. LNCS, vol. 11349, pp. 421–433. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-10970-7_19

    Chapter  Google Scholar 

  16. Rivest, R., Shamir, A., Adleman, L.: A Method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  Google Scholar 

  17. Smith, P.J., Lennon, G.J.J.: LUC: A New Public-Key Cryptosystem, pp. 103–117. Elsevier Science Publishers, Ninth IFIP Symposium on Computer Science Security (1993)

    Google Scholar 

  18. Peng, L., Hu, L., Lu, Y., Wei, H.: An improved analysis on three variants of the RSA cryptosystem. In: Chen, K., Lin, D., Yung, M. (eds.) Inscrypt 2016. LNCS, vol. 10143, pp. 140–149. Springer, Cham (2017)

    Google Scholar 

  19. Quisquater, J.J., Couvreur, C.: Fast decipherment algorithm for RSA public key cryptosystem. Electron. Lett. 18, 905–907 (1982)

    Article  Google Scholar 

  20. de Weger, B.: Cryptanalysis of RSA with small prime difference. Appl. Algebra Eng. Commun. Comput. 13(1), 17–28 (2002)

    Article  MathSciNet  Google Scholar 

  21. Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. Theory 36, 553–558 (1990)

    Article  MathSciNet  Google Scholar 

  22. Zheng, M., Kunihiro, N., Hu, H.: Cryptanalysis of RSA Variants with Modified Euler Quotient. In: Joux A., Nitaj A., Rachidi T. (eds.) Progress in Cryptology-AFRICACRYPT 2018. AFRICACRYPT 2018. Lecture Notes in Computer Science, vol. 10831. Springer, Cham (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahmane Nitaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cherkaoui-Semmouni, M., Nitaj, A., Susilo, W., Tonien, J. (2021). Cryptanalysis of RSA Variants with Primes Sharing Most Significant Bits. In: Liu, J.K., Katsikas, S., Meng, W., Susilo, W., Intan, R. (eds) Information Security. ISC 2021. Lecture Notes in Computer Science(), vol 13118. Springer, Cham. https://doi.org/10.1007/978-3-030-91356-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91356-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91355-7

  • Online ISBN: 978-3-030-91356-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics