Skip to main content

Cleaning of Parts with Detonating Gas Mixtures

  • Conference paper
  • First Online:
Advanced Manufacturing Processes III (InterPartner 2021)

Abstract

An overwhelming number of defects occur for production reasons due to technology deficiencies. The thermal-impulse method allows you to flexibly automate the cleaning operations from technological contaminants in particles, burrs and quickly wearing out part of the microrelief when obtaining a close to the absolute degree of cleaning surfaces and edges the listed liquids. The technological capabilities of thermal-impulse treatment, control parameters, and factors on which the rational choice of processing modes for machine parts and mechanisms depend are considered. The factors influencing the determination of the optimal modes of cleaning the edges and surfaces of the parts and the factors allowing to form the technical characteristics of the heat source and equipment as a whole, realizing the optimal modes with self-regulation properties, have been determined and systematized. Parts were analyzed after processing by thermal impulse method and for comparison with thermochemical. Therefore, detonating gas technologies are the most attractive because of their versatility and flexibility concerning parts with complex configurations of internal and external surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

1. References

  1. Niknam, S., Davoodi, B., Davim, J.P., Songmene, V.: Mechanical deburring and edge-finishing processes for aluminum parts—a review. Int. J. Adv. Manuf. Technol. 95(1–4), 1101–25 (2018)

    Google Scholar 

  2. ALP De San Román, Chaves-Jacob, J., Linares, J.M., Arrazola, P.J.: Analytical-method for polishing-surface prediction considering tool flexibility and grain-material interaction. J. Mater. Process. Technol., 117208 (2021)

    Google Scholar 

  3. Balázs, B.Z., Takács, M.: Experimental investigation and optimisation of the micro milling process of hardened hot-work tool steel. Int. J. Adv. Manuf. Technol. 106(11–12), 5289–5305 (2020). https://doi.org/10.1007/s00170-020-04991-x

    Article  Google Scholar 

  4. Chen, L., Deng, D., Pi, G., Huang, X., Zhou, W.: Burr formation and surface roughness characteristics in micro-milling of microchannels. Int. J. Adv. Manuf. Technol. 111(5–6), 1277–1290 (2020). https://doi.org/10.1007/s00170-020-06170-4

    Article  Google Scholar 

  5. Chen, W., Teng, X., Zheng, L., Xie, W., Huo, D.: Burr reduction mechanism in vibration-assisted micro milling. Manuf. Lett. 16(2018), 6–9 (2018)

    Article  Google Scholar 

  6. Chen, Y., Wang, T., Zhang, A.G.: Research on parameter optimization of micro-milling al7075 based on edge-size-effect. Micromachines 11(2), 1–15 (2020)

    Google Scholar 

  7. Hanson, C., Hiwase, P., Chen, X., Jahan, M.P., Ma, J., Arbuckle, G.: Experimental investigation and numerical simulation of burr formation in micro-milling of polycarbonates. Procedia Manuf. 34(2019), 293–304 (2019)

    Article  Google Scholar 

  8. Khan, K., Varghese, A., Dixit, P., Joshi, S.S.: Effect of tool path complexity on top burrs in micromilling. Procedia Manuf. 34(2019), 432–439 (2019)

    Article  Google Scholar 

  9. Hajiahmadi, S.: Burr size investigation in micro milling of stainless steel 316L. Int. J. Lightweight Mater. Manufacture 2(4), 296–304 (2019)

    Article  Google Scholar 

  10. Ivanov, V., Vashchenko, S., Rong, Y.: Information support of the computer-aided fixture design system. In: CEUR Workshop Proceedings, vol. 1614, pp. 73–86 (2016)

    Google Scholar 

  11. Akimov, O.V., et al.: Computer engineering and design of cast parts for internal combustion engine crankcase. J. Eng. Sci. 6(2), E24–E30 (2019). https://doi.org/10.21272/jes.2019.6(2).e4

    Article  Google Scholar 

  12. Kiran, A.V.N.S., Ramanjaneyulu, B., Lokanath, M., Nagendra, S., Balachander, G.E.: Control of exhaust emissions using piston coating on two-stroke SI engines with gasoline blends. J. Eng. Sci. 8(1), H16–H20 (2021). https://doi.org/10.21272/jes.2021.8(1).h3

    Article  Google Scholar 

  13. Aurich, J.C., Dornfeld, D., Arrazola, P.J., Franke, V., Leitz, L., Min, S.: Burrs-Analysis, control and removal. CIRP Ann. Manuf. Technol. 58, 519–542 (2009)

    Article  Google Scholar 

  14. Rui, Z., Zi, Z., Minghui, H.: The art of laser ablation in aeroengine: the crown jewel of modern industry. J. Appl. Phys. 127, 080902 (2020). https://doi.org/10.1063/1.5134813

  15. Kumar, M., Bajpai, V.: Experimental investigation of top burr formation in high-speed micro-milling of Ti6Al4V alloy. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 234(4), 730–738 (2019)

    Article  Google Scholar 

  16. Loseva, O., Losev, A., Majorova, E.: Development of physical and mathematical models of impulse-periodic processes of heating the elements of the part. In: Proceedings International Scientific and Practical Conference Public communication in science: philosophical, cultural, political, economic and IT context. Collection of scientific papers «ΛΌГOΣ», vol. 2, pp. 97–104. European Scientific Platform, Houston, USA (2020)

    Google Scholar 

  17. Jin, S.Y., Pramanik, A., Basak, A.K., Prakash, C., Shankar, S., Debnath, S.: Burr formation and its treatments—a review. Int. J. Adv. Manuf. Technol. 107(5–6), 2189–2210 (2020). https://doi.org/10.1007/s00170-020-05203-2

    Article  Google Scholar 

  18. Ivanov, V., Pavlenko, I., Liaposhchenko, O., Gusak, O., Pavlenko, V.: Determination of contact points between workpiece and fixture elements as a tool for augmented reality in fixture design. Wireless Netw. 27(3), 1657–1664 (2019). https://doi.org/10.1007/s11276-019-02026-2

    Article  Google Scholar 

  19. Pavlenko, I., et al.: Parameter identification of cutting forces in crankshaft grinding using artificial neural networks. Materials 13(23), 5357 (2020). https://doi.org/10.3390/ma13235357

    Article  Google Scholar 

  20. Abele, E., Schützer, K., Güth, S., Meinhard, A.: Deburring of cross-drilled holes with ball-end cutters—modeling the tool path. Prod. Eng. Res. Devel. 12(1), 25–33 (2017). https://doi.org/10.1007/s11740-017-0781-0

    Article  Google Scholar 

Download references

Acknowledgment

This research was partially supported by International Association for Technological Development and Innovations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vira Shendryk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Losev, A., Bychkov, I., Selezneva, A., Shendryk, V., Shendryk, S. (2022). Cleaning of Parts with Detonating Gas Mixtures. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes III. InterPartner 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-91327-4_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91327-4_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91326-7

  • Online ISBN: 978-3-030-91327-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics