Skip to main content

Cancer Immunoediting: Elimination, Equilibrium, and Immune Escape in Solid Tumors

  • Chapter
  • First Online:

Part of the book series: Experientia Supplementum ((EXS,volume 113))

Abstract

Emphasizing the dynamic processes between cancer and host immune system, the initially discovered concept of cancer immunosurveillance has been replaced by the current concept of cancer immunoediting consisting of three phases: elimination, equilibrium, and escape. Solid tumors composed of both cancer and host stromal cells are an example how the three phases of cancer immunoediting functionally evolve and how tumor shaped by the host immune system gets finally resistant phenotype. The elimination, equilibrium, and escape have been described in this chapter in details, including the role of immune surveillance, cancer dormancy, disruption of the antigen-presenting machinery, tumor-infiltrating immune cells, resistance to apoptosis, as well as the function of tumor stroma, microvesicles, exosomes, and inflammation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AKT:

protein kinase B

APCs:

antigen-presenting cells

BMP:

bone morphogenetic protein

CAFs:

cancer-associated fibroblasts

CCR:

C-C chemokine receptor

COX:

cyclooxygenase

CSCs:

cancer stem cells

CSF-1:

colony-stimulating factor-1

CTCs:

circulating tumor cells

CTLA-4:

cytotoxic T lymphocyte-associated antigen-4

CTLs:

cytotoxic T lymphocytes

CXCR:

C-X-C motif chemokine receptor

DCs:

dendritic cells

DTCs:

disseminated tumor cells

ECM:

extracellular matrix

EMT:

epithelial-to-mesenchymal transition

ERK:

extracellular signal-regulated kinase

FAK:

focal adhesion kinase

FasL:

Fas ligand

FGF:

fibroblast growth factor

GITR:

glucocorticoid-induced tumor necrosis factor receptor

GLI:

glioma-associated oncogene homolog

GM-CSF:

granulocyte-macrophage colony stimulating factor

Hh:

hedgehog signaling

HIF-1α:

hypoxia-inducible factor-1α

HLA:

human leukocyte antigen

HSP:

heat-shock protein

IAPs:

inhibitor of apoptosis proteins

IDO:

indoleamine 2,3-dioxygenase

IFN:

interferon

IGF:

insulin-like growth factor

IL:

interleukin

ILT:

immunoglobulin-like transcript

JAK:

Janus kinase

JNK:

c-Jun N-terminal kinases

MAPK:

mitogen-activated protein kinases

MCP-1:

monocyte chemotactic protein-1

M-CSF:

macrophage colony stimulating factor

mDCs:

mature dendritic cells

MDCs:

myeloid dendritic cells

MDSCs:

myeloid-derived suppressor cells

MICs:

metastasis-initiating cells

MMPs:

metalloproteinases

mTOR:

mammalian target of rapamycin

NF-κB:

nuclear factor kappa-light-chain-enhancer of activated B cells

NK:

natural killer cells

NKG2D:

activating receptor of NK cells

NKT:

natural killer T cells

NO:

nitric oxide

NOTCH:

neurogenic locus notch homolog protein

NR2F1:

nuclear receptor subfamily-2 group-F member-1

PD-1:

programmed death-1

PDCs:

plasmacytoid dendritic cells

PD-L1:

programmed death-1 ligand (also called B7-H1)

PGE2:

prostaglandin E2

PI3K:

phosphatidylinositol 3-kinase/phosphatase

RANTES:

Regulated on Activation, Normal T-cell Expressed and Secreted (CCL5)

RNS:

reactive nitrogen species

ROI/ROS:

reactive oxygen intermediates/species

STAT:

signal transducer and activator of transcription

TAA:

tumor-associated antigen

TAMs:

tumor-associated macrophages

TANs:

tumor-associated neutrophils

TCR:

T-cell receptor

TEMs:

tie-2-expressing monocytes/macrophages

TGF-β:

transforming growth factor-β

TILs:

tumor-infiltrating lymphocytes

TLR:

toll-like receptor

TNF-α:

tumor necrosis factor-α

Tr1 cells:

type 1 regulatory T cells

TRAIL:

TNF-related apoptosis-inducing ligand

Tregs:

T regulatory cells

uPAR:

urokinase plasminogen activator receptor

VEGF:

vascular-endothelial growth factor

References

  • Abdollahi T, Robertson NM, Abdollahi A, Litwack G (2003) Identification of interleukin 8 as an inhibitor of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in the ovarian carcinoma cell line OVCAR3. Cancer Res 63:4521–4526

    CAS  PubMed  Google Scholar 

  • Abe Y, Oda-Sato E, Tobiume K, Kawauchi K, Taya Y, Okamoto K et al (2008) Hedgehog signaling overrides p53-mediated tumor suppression by activating Mdm2. Proc Natl Acad Sci U S A 105:4838–4843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abusamra AJ, Zhong Z, Zheng X, Li M, Ichim TE, Chin JL et al (2005) Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cells Mol Dis 35:169–173

    Article  CAS  PubMed  Google Scholar 

  • Adida C, Berrebi D, Peuchmaur M, Reyes-Mugica M, Altieri DC (1998) Anti-apoptosis gene, survivin, and prognosis of neuroblastoma. Lancet 351:882–883

    Article  CAS  PubMed  Google Scholar 

  • Akashi T, Koizumi K, Tsuneyama K, Saiki I, Takano Y, Fuse H (2008) Chemokine receptor CXCR4 expression and prognosis in patients with metastatic prostate cancer. Cancer Sci 99:539–542

    Article  CAS  PubMed  Google Scholar 

  • Allavena P, Mantovani A (2012) Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin Exp Immunol 167:195–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allgayer H, Aguirre-Ghiso JA (2008) The urokinase receptor (u-PAR)—a link between tumor cell dormancy and minimal residual disease in bone marrow? APMIS Acta Pathol Microbiol Immunol Scand 116:602–614

    Article  CAS  Google Scholar 

  • Almog N, Briggs C, Beheshti A, Ma L, Wilkie KP, Rietman E, Hlatky L (2013) Transcriptional changes induced by the tumor dormancy-associated microRNA-190. Transcription 4:177–191

    Article  PubMed  CAS  Google Scholar 

  • Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10:619–624

    Article  CAS  PubMed  Google Scholar 

  • Amedei A, Della Bella C, Silvestri E, Prisco D, D’Elios MM (2012) T cells in gastric cancer: friends or foes. Clin Develop Immunol. https://doi.org/10.1155/2012/690571

  • Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P et al (2002) Induction of lymphocyte apoptosis by tumor cell secretion of FasL bearing microvesicles. J Exp Med 195:1303–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki H, Ohnishi H, Hama K, Shinozaki S, Kita H, Yamamoto H et al (2006) Existence of autocrine loop between interleukin-6 and transforming growth factor-beta1 in activated rat pancreatic stellate cells. J Cell Biochem 99:221–228

    Article  CAS  PubMed  Google Scholar 

  • Arai H, Gordon D, Nabel EG, Nabel GJ (1997) Gene transfer of Fas ligand induces tumor regression in vivo. Proc Natl Acad Sci U S A 94:13862–13867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augsten M, Hägglöf C, Olsson E, Stolz C, Tsagozis P, Levchenko T et al (2009) CXCL14 is an autocrine growth factor for fibroblasts and acts as a multimodal stimulator of prostate tumor growth. Proc Natl Acad Sci U S A 106:3414–3419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avery-Kiejda KA, Bowden NA, Croft AJ, Scurr LL, Kairupan CF, Ashton KA et al (2011) p53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation. BMC Cancer 11:203. https://doi.org/10.1186/1471-2407-11-203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  CAS  PubMed  Google Scholar 

  • Balkwill F (2002) Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev 13:135–141

    Article  CAS  PubMed  Google Scholar 

  • Baltz KM, Krusch M, Bringmann A, Brossart P, Mayer F, Kloss M et al (2007) Cancer immunoediting by GITR (glucocorticoid induced TNF-related protein) ligand in humans: NK cell/tumor cell interactions. FASEB J 21:2442–2454

    Article  CAS  PubMed  Google Scholar 

  • Bamias A, Koutsoukou V, Terpos E, Tsiatas ML, Liakos C, Tsitsilonis O et al (2008) Correlation of NKT-like CD3+CD56+ cells and CD4+CD25+(hi) regulatory T cells with VEGF and TNF alpha in ascites from advanced ovarian cancer: association with platinum resistance and prognosis in patients receiving first-line platinum based chemotherapy. Gynecol Oncol 108:421–427

    Article  CAS  PubMed  Google Scholar 

  • Barkan D, Green JE, Chambers AF (2010) Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer 46:1181–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates RC, Mercurio AM (2005) The epithelial-mesenchymal transition (EMT) and colorectal cancer progression. Cancer Biol Ther 4:365–370

    Article  CAS  PubMed  Google Scholar 

  • Bates RC, Goldsmith JD, Bachelder RE, Brown C, Shibuya M, Oettgen P et al (2003) Flt-1-dependent survival characterizes the epithelial-mesenchymal transition of colonic organoids. Curr Biol 13:1721–1727

    Article  CAS  PubMed  Google Scholar 

  • Becker KF, Atkinson MJ, Reich U, Becker I, Nekarda H, Siewert JR, Hofler H (1994) E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res 54:3845–3852

    CAS  PubMed  Google Scholar 

  • Ben-Baruch A (2006) Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol 16:38–52

    Article  CAS  PubMed  Google Scholar 

  • Bennaceur K, Chapman JA, Touraine JL, Portoukalian J (2009) Immunosuppressive networks in the tumour environment and their effect in dendritic cells. Biochim Biophys Acta 1795:16–24

    CAS  PubMed  Google Scholar 

  • Berger FG (2004) The interleukin-6 gene: a susceptibility factor that may contribute to racial and ethnic disparities in breast cancer mortality. Breast Cancer Res Treat 88:281–285

    Article  CAS  PubMed  Google Scholar 

  • Berger-Achituv S, Brinkmann V, Abu Abed U, Kühn LI, Ben-Ezra J, Elhasid R et al (2013) A proposed role for neutrophil extracellular traps in cancer immunoediting. Frontiers Immunol 4:1–5

    Article  CAS  Google Scholar 

  • Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN et al (2002) Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297:1559–1561

    Article  CAS  PubMed  Google Scholar 

  • Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238

    Article  CAS  PubMed  Google Scholar 

  • Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME et al (2001) Transforming growth factor-b1 mediates epithelial to mesenchymal transdifferentiation through a Rho-A-dependent mechanism. Mol Biol Cell 12:27–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi Y, Liu G, Yang R (2007) Th17 cell induction and immune regulatory effects. J Cell Physiol 211:273–278

    Article  CAS  PubMed  Google Scholar 

  • Bijlsma MF, Groot AP, Oduro JP, Franken RJ, Schoenmakers SH, Peppelenbosch MP et al (2009) Hypoxia induces a hedgehog response mediated by HIF-1alpha. J Cell Mol Med 13:2053–2060

    Article  PubMed  Google Scholar 

  • Biragyn A, Longo DL (2012) Neoplastic “black ops”: Cancer’s subversive tactics in overcoming host defenses. Semin Cancer Biol 22:50–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916

    Article  CAS  PubMed  Google Scholar 

  • Bragado P, Sosa MS, Keely P, Condeelis J, Aguirre-Ghiso JA (2012) Microenvironments dictating tumor cell dormancy. Recent Results Cancer Res 195:25–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2006) Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 176:284–290

    Article  CAS  PubMed  Google Scholar 

  • Burnet FM (1970) The concept of immunological surveillance. Prog Exp Tumor Res 13:1–27

    Article  CAS  PubMed  Google Scholar 

  • Busk M, Pytela R, Sheppard D (1992) Characterization of the integrin avb6 as a fibronectin-binding protein. J Biol Chem 267:5790–5796

    Article  CAS  PubMed  Google Scholar 

  • Byrne SN, Halliday GM (2003) High levels of Fas ligand and MHC class II in the absence of CD80 or CD86 expression and a decreased CD4+ T cell infiltration enables murine skin tumours to progress. Cancer Immunol Immunother 52:396–402

    Article  CAS  PubMed  Google Scholar 

  • Camby I, Le Mercier M, Lefranc F, Kiss R (2006) Galectin-1: a small protein with major functions. Glycobiology 16:137R–157R

    Article  CAS  PubMed  Google Scholar 

  • Campoli M, Ferrone S (2008) Tumor escape mechanisms: potential role of soluble HLA antigens and NK cells activating ligands. Tissue Antigens 72:321–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon MJ, Goyne H, Stone PJB, Chiriva-Internati M (2011) Dendritic cell vaccination against ovarian cancer—tipping the Treg/Th17 balance to therapeutic advantage? Expert Opin Biol Ther 11:441–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castaño Z, Tracy K, McAllister SS (2011) The tumor macroenvironment and systemic regulation of breast cancer progression. Int J Dev Biol 55:889–897

    Article  PubMed  Google Scholar 

  • Castellana D, Zobairi F, Martinez MC, Panaro MA, Mitolo V, Freyssinet JM et al (2009) Membrane microvesicles as actors in the establishment of a favorable prostatic tumoral niche: a role for activated fibroblasts and CX3CL1-CX3CR1 axis. Cancer Res 69:785–793

    Article  CAS  PubMed  Google Scholar 

  • Castellino F, Germain RN (2006) Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu Rev Immunol 24:519–540

    Article  CAS  PubMed  Google Scholar 

  • Catchpoole DR, Lock RB (2001) The potential tumour suppressor role for caspase-9 (CASP9) in the childhood malignancy, neuroblastoma. Eur J Cancer 37:2217–2221

    Article  CAS  PubMed  Google Scholar 

  • Chappell DB, Zaks TZ, Rosenberg SA, Restifo NP (1999) Human melanoma cells do not express Fas (Apo-1/CD95) ligand. Cancer Res 59:59–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chemnitz JM, Eggle D, Driesen J, Classen S, Riley JL, Debey-Pascher S et al (2007) RNA fingerprints provide direct evidence for the inhibitory role of TGFbeta and PD-1 on CD4+ T cells in Hodgkin lymphoma. Blood 110:3226–3233

    Article  CAS  PubMed  Google Scholar 

  • Chen CK, Wu MY, Chao KH, Ho HN, Sheu BC, Huang SC (1999a) T lymphocytes and cytokine production in ascitic fluid in ovarian malignancies. J Formos Med Assoc 98:24–30

    CAS  PubMed  Google Scholar 

  • Chen Z, Naito M, Hori S, Mashima T, Yamori T, Tsuruo T (1999b) A human IAP family gene, apollon, expressed in human brain cancer cells. Biochem Biophys Res Commun 264:847–854

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Shi M, Yu GZ, Qin XR, Jin G, Chen P et al (2012) Interleukin-8, a promising predictor for prognosis of pancreatic cancer. World J Gastroenterol 18:1123–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng N, Bhowmick NA, Chytil A, Gorksa AE, Brown KA, Muraoka R et al (2005) Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene 24:5053–5068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng L, Jiang J, Gao R, Wei S, Nan F, Li S et al (2009) B7-H4 expression promotes tumorigenesis in ovarian cancer. Int J Gynecol Cancer 19:1481–1486

    Article  PubMed  Google Scholar 

  • Clark AG, Vignjevic DM (2015) Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol 36:13–22

    Article  CAS  PubMed  Google Scholar 

  • Clayton A, Court J, Navabi H, Adams M, Mason MD, Hobot JA et al (2001) Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods 247:163–174

    Article  CAS  PubMed  Google Scholar 

  • Clendenen TV, Lundin E, Zeleniuch-Jacquotte A, Koenig KL, Berrino F, Lukanova A et al (2011) Circulating inflammation markers and risk of epithelial ovarian cancer. Cancer Epidemiol Biomark Prev 20:799–810

    Article  CAS  Google Scholar 

  • Colonna TGM, Liu YJ (2004) Plasmacytoid dendritic cells in immunity. Nat Immunol 5:1219–1226

    Article  CAS  PubMed  Google Scholar 

  • Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22:8590–8607

    Article  CAS  PubMed  Google Scholar 

  • Coudert JD, Zimmer J, Tomasello E, Cebecauer M, Colonna M, Vivier E et al (2005) Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells. Blood 106:1711–1717

    Article  CAS  PubMed  Google Scholar 

  • Coukos G, Benencia F, Buckanovich RJ, Conejo-Garcia JR (2005) The role of dendritic cell precursors in tumour vasculogenesis. Brit J Cancer 92:1182–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowe NY, Smyth MJ, Godfrey DI (2002) A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J Exp Med 196:119–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Culig Z, Puhr M (2012) Interleukin-6: a multifunctional targetable cytokine in human prostate cancer. Mol Cell Endocrinol 360:52–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curiel TJ, Cheng P, Mottram P, Alvarez X, Moons L, Evdemon-Hogan M et al (2004a) Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res 64:5535–5538

    Article  CAS  PubMed  Google Scholar 

  • Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al (2004b) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  CAS  PubMed  Google Scholar 

  • D’Souza-Schorey C, Clancy JW (2012) Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev 26:1287–1299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dainiak N, Sorba S (1991) Intracellular regulation of the production and release of human erythroid-directed lymphokines. J Clin Invest 87:213–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Harris LG, Metge BJ, Liu S, Riker AI, Samant R et al (2009) The hedgehog pathway transcription factor GLI1 promotes malignant behavior of cancer cells by up-regulating Osteopontin. J Biol Chem 284:22888–22897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Angelis ML, Francescangeli F, Zeuner A (2019) Breast cancer stem cells as drivers of tumor Chemoresistance, dormancy and relapse: new challenges and therapeutic opportunities. Cancers 11:1569. https://doi.org/10.3390/cancers11101569

    Article  CAS  PubMed Central  Google Scholar 

  • DeNardo DG, Andreu P, Coussens LM (2010) Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev 29:309–316

    Article  PubMed  PubMed Central  Google Scholar 

  • Devarajan E, Sahin AA, Chen JS, Krishnamurthy RR, Aggarwal N, Brun AM et al (2002) Downregulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene 21:8843–8851

    Article  CAS  PubMed  Google Scholar 

  • Dobrzycka B, Terlikowski SJ, Garbowicz M, Niklińska W, Bernaczyk PS, Nikliński J et al (2009) Tumor necrosis factor-α and its receptors in epithelial ovarian cancer. Folia Histochem Cytobiol 47:609–613

    PubMed  Google Scholar 

  • Dong C, Robertson GP (2009) Immunoediting of leukocyte functions within the tumor microenvironment promotes cancer metastasis development. Biorheology 46:265–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan Z, Feller AJ, Penson RT, Chabner BA, Seiden MV (1999) Discovery of differentially expressed genes associated with paclitaxel resistance using cDNA array technology: analysis of interleukin (IL) 6, IL-8, and monocyte chemotactic protein 1 in the paclitaxel resistant phenotype. Clin Cancer Res 5:3445–3453

    CAS  PubMed  Google Scholar 

  • Duechler M, Wilczyński JR (2010) Hypoxia inducible Factor-1 in cancer immune suppression. Curr Immunol Rev 6:260–271

    Article  CAS  Google Scholar 

  • Dunér S, Lopatko Lindman J, Ansari D, Gundewar C, Andersson R (2011) Pancreatic cancer: the role of pancreatic stellate cells in tumor progression. Pancreatology 10:673–681

    Article  CAS  Google Scholar 

  • Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002 Nov) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998

    Article  CAS  PubMed  Google Scholar 

  • Dunn GP, Oki LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148

    Article  CAS  PubMed  Google Scholar 

  • Duray A, Demoulin S, Hubert P, Delvenne P, Saussez S (2010) Immune suppression in head and neck cancers: a review. Clin Develop Immunol. https://doi.org/10.1155/2010/701657

  • Dworacki G, Meidenbauer N, Kuss I, Kuss I, Hoffmann TK, Gooding W et al (2001) Decreased zeta chain expression and apoptosis in CD3+ peripheral blood T lymphocytes of patients with melanoma. Clin Cancer Res 7(3 Suppl):947s–957s

    CAS  PubMed  Google Scholar 

  • Eberl G, MacDonald HR (2000) Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur J Immunol 30:985–992

    Article  CAS  PubMed  Google Scholar 

  • Elgert KD, Alleva DG, Mullins DW (1998) Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol 64:275–290

    Article  CAS  PubMed  Google Scholar 

  • Erdman SE, Rao VP, Olipitz W, Taylor CL, Jackson EA, Levkovich T et al (2010) Unifying roles for regulatory T cells and inflammation in cancer. Int J Cancer 126:1651–1665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Escrevente C, Keller S, Altevogt P, Costa J (2011) Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer 11:108–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman AR, Kessler L, Myers MH, Naughton MD (1986) The prevalence of cancer. Estimates based on the Connecticut tumor registry. N Engl J Med 315:1394–1397

    Article  CAS  PubMed  Google Scholar 

  • Feng YZ, Shiozawa T, Miyamoto T, Kashima H, Kurai M, Suzuki A et al (2007) Overexpression of hedgehog signaling molecules and its involvement in the proliferation of endometrial carcinoma cells. Clin Cancer Res 13:1389–1398

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N (2010) Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev 21:21–26

    Article  CAS  PubMed  Google Scholar 

  • Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Koochro VK et al (2009) PD-L1 regulates the development, maintenance and function of induced regulatory T cells. J Exp Med 206:3015–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco OE, Shaw AK, Strand DW, Hayward SW (2010) Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 21:33–39

    Article  CAS  PubMed  Google Scholar 

  • Freedman RS, Deavers M, Liu J, Wang E (2004) Peritoneal inflammation—a microenvironment for epithelial ovarian cancer (EOC). J Transl Med 2:23–33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frey AB, Monu N (2006) Effector-phase tolerance: another mechanism of how cancer escapes antitumor immune response. J Leukoc Biol 79:652–662

    Article  CAS  PubMed  Google Scholar 

  • Fricke I, Gabrilovich DI (2006) Dendritic cells and tumor microenvironment: a dangerous liaison. Immunol Investig 35:459–483

    Article  CAS  Google Scholar 

  • Fujimoto K, Sheng H, Shao J, Beauchamp RD (2001) Transforming growth factor-b1 promotes invasiveness after cellular transformation with activated ras in intestinal epithelial cells. Exp Cell Res 266:239–249

    Article  CAS  PubMed  Google Scholar 

  • Fulda S, Los M, Friesen C, Debatin KM (1998) Chemosensitivity of solid tumour cells in vitro is related to activation of the CD95 system. Int J Cancer 76:105–114

    Article  CAS  PubMed  Google Scholar 

  • Fulda S, Meyer E, Debatin KM (2000) Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 21:2283–2294

    Article  Google Scholar 

  • Fulda S, Kufer MU, Meyer E, van Valen F, Dockhorn-Dworniczak B, Debatin KM (2001) Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene 20:5865–5877

    Article  CAS  PubMed  Google Scholar 

  • Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressory cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaillard SL, Secord AA, Monk B (2016) The role of immune checkpoint inhibition in the treatment of ovarian cancer. Gynecol Oncol Res Pract 3:11–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Gavalas NG, Karadimou A, Dimopoulos MA, Bamias A (2010) Immune response in ovarian cancer: how is the immune system involved in prognosis and therapy: potential for treatment utilization. Clin Develop Immunol. https://doi.org/10.1155/2010/791603

  • Gawrzak S, Rinaldi L, Gregorio S, Arenas EJ, Salvador F, Urosevic J et al (2018) MSK1 regulates luminal cell differentiation and metastatic dormancy in ER(+) breast cancer. Nat Cell Biol 20:211–221

    Article  CAS  PubMed  Google Scholar 

  • Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N et al (2005a) CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-ß-dependent manner. J Exp Med 202:1075–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E et al (2005b) Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 202:919–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginestra A, Miceli D, Dolo V, Romano FM, Vittorelli ML (1999) Membrane vesicles in ovarian cancer fluids: a new potential marker. Anticancer Res 19:3439–3445

    CAS  PubMed  Google Scholar 

  • Giusti I, D’Ascenzo S, Dolo D (2013) Microvesicles as potential ovarian cancer biomarkers. BioMed Res International. https://doi.org/10.1155/2013/703048

  • Godin-Ethier J, Hanafi LA, Piccirillo CA, Lapointe R (2011) Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin Cancer Res 17:6985–6991

    Article  CAS  PubMed  Google Scholar 

  • Goldstein MG, Li Z (2009) Heat-shock proteins in infection-mediated inflammation-induced tumorigenesis. J Hematol Oncol 2:5–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gordon IO, Freedman RS (2006) Defective antitumor function of monocyte-derived macrophages from epithelial ovarian cancer patients. Clin Cancer Res 12:1515–1524

    Article  CAS  PubMed  Google Scholar 

  • Graves LE, Ariztia EV, Navari JR, Matzel HJ, Stack MS, Fishman DA (2004) Proinvasive properties of ovarian cancer ascites-derived membrane vesicles. Cancer Res 64:7045–7049

    Article  CAS  PubMed  Google Scholar 

  • Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ (1998) Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 161:2833–2840

    CAS  PubMed  Google Scholar 

  • Grigoriev MY, Pozharissky KM, Hanson KP, Imyanitov EN, Zhivotovsky B (2002) Expression of caspase-3 and -7 does not correlate with the extent of apoptosis in primary breast carcinomas. Cell Cycle 1:337–342

    Article  CAS  PubMed  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    Article  CAS  PubMed  Google Scholar 

  • Hahne M, Rimoldi D, Schröter M, Romero P, Schreier M, French LE et al (1996) Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 274:1363–1366

    Article  CAS  PubMed  Google Scholar 

  • Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K et al (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 104:3360–3365. https://doi.org/10.1073/pnas.0611533104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamann D, Baars PA, Rep MH, Hooibrink B, Kerkhof-Garde SR, Klein MR et al (1997) Phenotypic and functional separation of memory and effector human CD8 T cells. J Exp Med 186:1407–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han ME, Lee YS, Baek SY, Kim BS, Kim JB, Oh SO (2009) Hedgehog signaling regulates the survival of gastric cancer cells by regulating the expression of Bcl-2. Int J Molec Sci 10:3033–3043

    Article  CAS  Google Scholar 

  • Harris LG, Samant RS, Shevde LA (2011) Hedgehog signaling: networking to nurture a pro-malignant tumor microenvironment. Mol Cancer Res 9:1165–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayward SW, Wang Y, Cao M, Hom YK, Zhang B, Grossfeld GD et al (2001) Malignant transformation in a nontumorigenic human prostatic epithelial cell line. Cancer Res 61:8135–8142

    CAS  PubMed  Google Scholar 

  • Hazra A, Chamberlain RM, Grossman HB, Zhu Y, Spitz MR, Wu X (2003) Death receptor 4 and bladder cancer risk. Cancer Res 63:1157–1159

    CAS  PubMed  Google Scholar 

  • He C, Qiao H, Jiang H, Sun X (2011) The inhibitory role of B7-H4 in antitumor immunity: association with cancer progression and survival. Clin Develop Immunol. https://doi.org/10.1155/2011/695834

  • Hen O, Barkan D (2019) Dormant disseminated tumor cells and cancer stem/progenitor-like cells: similarities and opportunities. Sem Cancer Biol. 60:157–165

    Article  CAS  Google Scholar 

  • Hirohashi S (1998) Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Path 153:333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge DR, Hurt EM, Farrar WL (2005) The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer 41:2502–2512

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann TK, Dworacki G, Tsukihiro T, Meidenbauer N, Gooding W, Johnson JT et al (2002) Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clin Cancer Res 8:2553–2562

    PubMed  Google Scholar 

  • van Houdt IS, Oudejans JJ, van den Eertwegh AJM, Baars A, Vos W, Bladergroen BA et al (2005) Expression of the apoptosis inhibitor protease inhibitor 9 predicts clinical outcome in vaccinated patients with stage III and IV melanoma. Clin Cancer Res 11:6400–6407

    Article  PubMed  CAS  Google Scholar 

  • Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3:276–285

    Article  CAS  PubMed  Google Scholar 

  • Igney FH, Krammer PH (2002) Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol 71:907–920

    Article  CAS  PubMed  Google Scholar 

  • Inaba T, Ino K, Kajiyama H, Yamamoto E, Shibata K, Nawa A et al (2009) Role of the immunosuppressive enzyme indoleamine 2,3-dioxygenase in the progression of ovarian carcinoma. Gynecol Oncol 115:185–192

    Article  CAS  PubMed  Google Scholar 

  • Ingangi V, Minopoli M, Ragone C, Motti ML, Carriero MV (2019) Role of microenvironment on the fate of disseminating cancer stem cells. Front Oncol 9:82. https://doi.org/10.3389/fonc.2019.00082

    Article  PubMed  PubMed Central  Google Scholar 

  • Itakura E, Huang RR, Wen DR, Paul E, Wünsch PH, Cochran AJ (2011) IL-10 expression by primary tumor cells correlates with melanoma progression from radial to vertical growth phase and development of metastatic competence. Mod Pathol 24:801–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jadus MR, Natividad J, Mai A, Ouyang Y, Lambrecht N, Szabo S et al (2012) Lung cancer: a classic example of tumor escape and progression while providing opportunities for immunological intervention. Clin Develop Immunol. https://doi.org/10.1155/2012/160724

  • Jager R, Herzer U, Schenkel J, Weiher H (1997) Overexpression of Bcl-2 inhibits alveolar cell apoptosis during involution and accelerates cmyc-induced tumorigenesis of the mammary gland in transgenic mice. Oncogene 15:1787–1795

    Article  CAS  PubMed  Google Scholar 

  • Jahanban-Esfahlan J, Seidi K, Manjili MH, Jahanban-Esfahlan A, Javaheri T, Zare P (2019) Tumor cell dormancy: threat or opportunity in the fight against cancer. Cancers 11:1207. https://doi.org/10.3390/cancers11081207

    Article  CAS  PubMed Central  Google Scholar 

  • Janikashvili N, Bonnotte B, Katsanis E, Larmonier N (2011) The dendritic cell-regulatory T lymphocyte crosstalk contributes to tumor-induced tolerance. Clin Develop Immunol. https://doi.org/10.1155/2011/430394

  • Jee CD, Lee HS, Bae SI, Yang HK, Lee YM, Rho MS et al (2005) Loss of caspase-1 gene expression in human gastric carcinomas and cell lines. Int J Oncol 26:1265–1271

    CAS  PubMed  Google Scholar 

  • Jia Q, Yang F, Huang W, Zhang Y, Bao B, Li K et al (2019) Low levels of Sox2 are required for melanoma tumor-repopulating cell dormancy. Theranostics 9:424–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang DF, Liu WL, Lu YL, Qiu ZY, He FC (2003) Function of IL-18 in promoting metastasis of lung cancer. Zhonghua Zhong Liu Za Zhi 25:348–352

    CAS  PubMed  Google Scholar 

  • Jiang J, Zheng M, Zhang M, Yang X, Li L, Wang SS et al (2019) PRRX1 regulates cellular phenotype plasticity and dormancy of head and neck squamous cell carcinoma through miR-642b-3p. Neoplasia 21:216–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph B, Ekedahl J, Sirzen F, Lewensohn R, Zhivotovsky B (1999) Differences in expression of pro-caspases in small cell and non-small cell lung carcinoma. Biochem Biophys Res Commun 262:381–387

    Article  CAS  PubMed  Google Scholar 

  • Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  CAS  PubMed  Google Scholar 

  • Kammertoens T, Schüler T, Blankenstein T (2005) Immunotherapy: target the stroma to hit the tumor. Trends Molecul Med 11:225–231

    Article  CAS  Google Scholar 

  • Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    Article  CAS  PubMed  Google Scholar 

  • Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  CAS  PubMed  Google Scholar 

  • Kemperman H, Driessens MH, LaRiviere G, Meijne AM, Roos E (1995) Adhesion mechanisms in liver metastasis formation. Cancer Surv 24:67–79

    CAS  PubMed  Google Scholar 

  • Kerr JF, Harmon BV (1991) Definition and incidence of apoptosis: an historical perspective. In: Tomei LD, Cope FO (eds) Apoptosis: the molecular basis of cell death. Cold Spring Harbor Laboratory Press, New York, pp 5–29

    Google Scholar 

  • Khong HT, Restifo NP (2002) Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 3:999–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim R, Emi M, Tanabe K, Uchida Y, Toge T (2004) The role of Fas ligand and transforming growth factor β in tumor progression. Cancer 100:2281–2291

    Article  CAS  PubMed  Google Scholar 

  • Kim R, Emi M, Tanabe K (2005) Cancer cell immune escape and tumor progression by exploitation of anti-inflammatory and pro-inflammatory responses. Cancer Biol Ther 4:924–933

    Article  CAS  PubMed  Google Scholar 

  • Kim R, Emi M, Tanabe K (2007 May) Cancer immunoediting from immune surveillance to immune escape. Immunology 121(1):1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9:302–312

    Article  CAS  PubMed  Google Scholar 

  • Klink M, Jastrzembska K, Nowak M, Bednarska K, Szpakowski M, Szyllo K, Sulowska Z (2008 Sep) Ovarian cancer cells modulate human blood neutrophils response to activation in vitro. Scand J Immunol 68(3):328–336

    Article  CAS  PubMed  Google Scholar 

  • Klink M, Kielbik M, Nowak M, Bednarska K, Sulowska Z (2012a) JAK3, STAT3 and CD3-zeta signaling proteins status in regard to the lymphocytes function in patients with ovarian cancer. Immunol Investig 41(4):382–398

    Article  CAS  Google Scholar 

  • Klink M, Nowak M, Kielbik M, Bednarska K, Blus E, Szpakowski M et al (2012b Nov) The interaction of HspA1A with TLR2 and TLR4 in the response of neutrophils induced by ovarian cancer cells in vitro. Cell Stress Chaperones 17(6):661–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koomagi R, Volm M (2000) Relationship between the expression of caspase-3 and the clinical outcome of patients with non-small cell lung cancer. Anticancer Res 20:493–496

    CAS  PubMed  Google Scholar 

  • Krempski J, Karyampudi L, Behrens MD, Erskine CL, Hartmann L, Dong H et al (2011) Tumor infiltrating PD-1+ dendritic cells mediate immune suppression in ovarian cancer. J Immunol 186:6905–6913

    Article  CAS  PubMed  Google Scholar 

  • Krepela E, Dankova P, Moravcikova E, Krepelova A, Prochazka J, Cermak J et al (2009) Increased expression of inhibitor of apoptosis proteins, Survivin and XIAP, in non-small cell lung carcinoma. Int J Oncol 35:1449–1462

    Article  CAS  PubMed  Google Scholar 

  • Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S et al (2009) Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114:1141–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuai WX, Wang Q, Yang XZ, Zhao Y, Yu R, Tang XJ (2012) Interleukin-8 associates with adhesion, migration, invasion and chemosensitivity of human gastric cancer cells. World J Gastroenterol 18:979–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y (2009) Cancer metastasis is accelerated through immunosuppression during snail-induced EMT of cancer cells. Cancer Cell 15:195–206

    Article  CAS  PubMed  Google Scholar 

  • Kulbe H, Chakravarty P, Leinster DA, Charles KA, Kwong J, Thompson RG et al (2012) A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res 72:66–75

    Article  CAS  PubMed  Google Scholar 

  • Kusmartsev S, Gabrilovich DI (2006) Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 55:237–245

    Article  PubMed  Google Scholar 

  • Kusmartsev S, Nagaraj S, Gabrilovich DI (2005) Tumor associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol 175:4583–4592

    Article  CAS  PubMed  Google Scholar 

  • Labidi-Galy SI, Sisirak V, Meeus P, Gobert M, Treilleux I, Bajard A et al (2011) Quantitative and functional alterations of plasmacytoid dendritic cells contribute to immune tolerance in ovarian cancer. Cancer Res 71:5423–5434

    Article  CAS  PubMed  Google Scholar 

  • Lai HC, Sytwu HK, Sun CA, Yu MH, Yu CP, Liu HS et al (2003) Single nucleotide polymorphism at Fas promoter is associated with cervical carcinogenesis. Int J Cancer 103:221–225

    Article  CAS  PubMed  Google Scholar 

  • Lane DP (1992) p53, guardian of the genome. Nature 358:15–16

    Article  CAS  PubMed  Google Scholar 

  • Lane D, Matte I, Rancourt C, Piche A (2011) Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer 11:210–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K et al (2006) IL-23 promotes tumour incidence and growth. Nature 442:461–465

    Article  CAS  PubMed  Google Scholar 

  • Langowski JL, Kastelein RA, Oft M (2007) Swords into plowshares: IL-23 repurposes tumor immune surveillance. Trends Immunol 28:207–212

    Article  CAS  PubMed  Google Scholar 

  • Laufs S, Schumacher J, Allgayer H (2006) Urokinase-receptor (u-PAR): an essential player in multiple games of cancer a review on its role in tumor progression, invasion, metastasis, proliferation/dormancy, clinical outcome and minimal residual disease. Cell Cycle 5:e1–e12

    Google Scholar 

  • Lee HW, Lee SS, Lee SJ, Um HD (2003) Bcl-w is expressed in a majority of infiltrative gastric adenocarcinomas and suppresses the cancer cell death by blocking stress-activated protein kinase/c-Jun NH2-terminal kinase activation. Cancer Res 63:1093–1100

    CAS  PubMed  Google Scholar 

  • Li WW, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation and cancer. J Clin Invest 115:1175–1183

    Google Scholar 

  • Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al (2007a) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    Article  CAS  PubMed  Google Scholar 

  • Li X, Deng W, Lobo-Ruppert SM, Ruppert JM (2007b) Gli1 acts through snail and E-cadherin to promote nuclear signaling by beta-catenin. Oncogene 26:4489–4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao X, Siu MKY, Au CWH, Chan QK, Chan HY, Wong ES et al (2009) Aberrant activation of hedgehog signaling pathway in ovarian cancers: effect on prognosis, cell invasion and differentiation. Carcinogenesis 30:131–140

    Article  CAS  PubMed  Google Scholar 

  • Liao WT, Ye YP, Deng YJ, Bian XW, Ding YQ (2014) Metastatic cancer stem cells: from the concept to therapeutics. Am J Stem Cells 3:46–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin WW, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117:1175–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Aguirre Ghiso J, Estrada Y, Ossowski L (2002) EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 1:445–457

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Bi X, Xu S, Xiang J (2005) Tumor-infiltrating dendritic cell subsets of progressive or regressive tumors induce suppressive or protective immune responses. Cancer Res 65:4955–4962

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Yu S, Zinn K, Wang J, Zhang L, Jia Y et al (2006) Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J Immunol 176:1375–1385

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Nash J, Runowicz C, Swede H, Stevens R, Li Z (2010) Ovarian cancer immunotherapy: opportunities, progresses and challenges. J Hematol Oncol 3:7–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopes RB, Gangeswaran R, McNeish IA, Wang Y, Lemoine NR (2007) Expression of the IAP protein family is dysregulated in pancreatic cancer cells and is important for resistance to chemotherapy. Int J Cancer 120:2344–2352

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S et al (2008) The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest 118:3917–3929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lugini L, Matarrese P, Tinari A, Lozupone F, Federici C, Iessi E et al (2006) Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells. Cancer Res 66:3629–3638

    Article  CAS  PubMed  Google Scholar 

  • MacDonald TT (1998) T cell immunity to oral allergens. Curr Opin Immunol 10:620–627

    Article  CAS  PubMed  Google Scholar 

  • Macintosh CA, Stower M, Reid N, Maitland NJ (1998) Precise microdissection of human prostate cancers reveals genotypic heterogeneity. Cancer Res 58:23–28

    CAS  PubMed  Google Scholar 

  • MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350

    Article  CAS  PubMed  Google Scholar 

  • MacPherson G, Healey CS, Teare MD, Balasubramanian SP, Reed MW, Pharoah PD et al (2004) Association of a common variant of the CASP8 gene with reduced risk of breast cancer. J Natl Cancer Inst 96:1866–1869

    Article  CAS  PubMed  Google Scholar 

  • Maine CJ, Aziz NH, Chatterjee J, Hayford C, Brevig N, Whilding L et al (2014) Programmed death ligand-1 over-expression correlates with malignancy and contributes to immune regulation in ovarian cancer. Cancer Immunol Immunother 63:215–224

    Article  CAS  PubMed  Google Scholar 

  • Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF et al (2012) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481(7379):85–89

    Article  CAS  Google Scholar 

  • Malmberg KJ (2004) Effective immunotherapy against cancer: a question of overcoming immune suppression and immune escape? Cancer Immunol Immunother 53:879–892

    Article  CAS  PubMed  Google Scholar 

  • Mandruzzato S, Brasseur F, Andry G, Boon T, van der Bruggen P (1997) A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. J Exp Med 186:785–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Porta C, Rubino L, Allavena P, Sica A (2006) Tumor-associated macrophages (TAMs) as new target in anticancer therapy. Drug Discov Today Ther Strateg 3:361–366

    Article  Google Scholar 

  • Mao W, Peters HL, Sutton MN, Orozco AF, Pang L, Yang H et al (2019) The role of vascular endothelial growth factor, interleukin 8, and insulin-like growth factor in sustaining autophagic. DIRAS3-induced dormant ovarian cancer xenografts. Cancer 125:1267–1280

    Article  CAS  PubMed  Google Scholar 

  • Marches R, Scheuermann R, Uhr JW (2006) Cancer dormancy. From Mice to Man Cell Cycle 5:1772–1778

    Article  CAS  Google Scholar 

  • Matte I, Lane D, Laplante C, Rancourt C, Piché A (2012) Profiling of cytokines in human epithelial ovarian cancer ascites. Am J Cancer Res 2:566–580

    CAS  PubMed  PubMed Central  Google Scholar 

  • McDermott DF, Atkins MB (2013) PD-1 as a potential target in cancer therapy. Cancer Med 2:662–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGilvray RW, Eagle RA, Watson NFS, Al-Attar A, Ball G, Jafferji I et al (2009) NKG2D ligand expression in human colorectal cancer reveals associations with prognosis and evidence for Immunoediting. Clin Cancer Res 15:6993–7002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medema JP, de Jong J, Peltenburg LTC, Verdegaal EM, Gorter A, Bres SA et al (2001) Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Natl Acad Sci U S A 98:11515–11520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145

    Article  CAS  PubMed  Google Scholar 

  • Merritt WM, Lin YG, Spannuth WA, Fletcher MS, Kamat AA, Han LY et al (2008) Eeffect of interleukin-8 gene silencing with liposome-encapsulated small interfering RNA on ovarian cancer cell growth. J Natl Cancer Inst 100:359–372

    Article  CAS  PubMed  Google Scholar 

  • Mhawech-Fauceglia P, Wang D, Ali L, Lele S, Huba MA, Liu S et al (2013) Intraepithelial T cells and tumor-associated macrophages in ovarian cancer patients. Cancer Immun 13:1–6

    PubMed  PubMed Central  Google Scholar 

  • Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166–6173

    Article  CAS  PubMed  Google Scholar 

  • Minn AJ, Rudin CM, Boise LH, Thompson CB (1995) Expression of Bcl-XL can confer a multidrug resistance phenotype. Blood 86:1903–1910

    Article  CAS  PubMed  Google Scholar 

  • Miquel C, Borrini F, Grandjouan S, Aupérin A, Viguier J, Velasco V et al (2005) Role of bax mutations in apoptosis in colorectal cancers with microsatellite instability. Am J Clin Pathol 23:562–570

    Article  CAS  Google Scholar 

  • Mocellin S, Rossi CR, Pilati P, Nitti D (2005) Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev 16:35–53

    Article  CAS  PubMed  Google Scholar 

  • Moore KW, de Waal MR, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    Article  CAS  PubMed  Google Scholar 

  • Mor G, Yin G, Chefetz I, Yang Y, Alvero A (2011) Ovarian cancer stem cells and inflammation. Cancer Biol Ther 11:708–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Mouawad R, Antoine EC, Gil-Delgado M, Khayat D, Soubrane C (2002) Serum caspase-1 levels in metastatic melanoma patients: relationship with tumour burden and non-response to biochemotherapy. Melanoma Res 12:343–348

    Article  CAS  PubMed  Google Scholar 

  • Mouillot G, Marcou C, Zidi I, Guillard C, Sangrouber D, Carosella ED et al (2007) Hypoxia modulates HLA-G gene expression in tumor cells. Hum Immunol 68:277–285

    Article  CAS  PubMed  Google Scholar 

  • Moutsopoulos NM, Wen J, Wahl SM (2008) TGF-β and tumors—an ill-fated alliance. Curr Opin Immunol 20:234–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB et al (2002) Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297:1867–1870

    Article  CAS  PubMed  Google Scholar 

  • Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ et al (2004) Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 114:280–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C (2010) Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 123:1603–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murdoch C, Monk PN, Finn A (1999) Cxc chemokine receptor expression on human endothelial cells. Cytokine 11:704–712

    Article  CAS  PubMed  Google Scholar 

  • Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631

    Article  CAS  PubMed  Google Scholar 

  • Nagaraj S, Gabrilovich DI (2008) Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res 68:2561–2563

    Article  CAS  PubMed  Google Scholar 

  • Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L et al (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagorsen D, Scheibenbogen C, Marincola FM, Letsch A, Keilholz U (2003) Natural T cell immunity against cancer. Clin Cancer Res 9:4296–4303

    CAS  PubMed  Google Scholar 

  • Nash MA, Ferrandina G, Gordinier M, Loercher A, Freedman RS (1999) The role of cytokines in both the normal and malignant ovary. Endocr Relat Cancer 6:93–107

    Article  CAS  PubMed  Google Scholar 

  • Naumov GN, Akslen LA, Folkman J (2006) Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5:1779–1787

    Article  CAS  PubMed  Google Scholar 

  • Ning Y, Manegold PC, Kwon Hong Y, Zhang W, Pohl A, Lurje G et al (2011) Interleukin-8 is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models. Int J Cancer 128:2038–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak M, Glowacka E, Szpakowski M, Szyllo K, Malinowski A, Kulig A et al (2010a) Proinflammatory and immunosuppressive serum, ascites and cyst fluid cytokines in patients with early and advanced ovarian cancer and benign ovarian tumors. Neuroendocrinol Lett 31:101–109

    Google Scholar 

  • Nowak M, Klink M, Glowacka E, Sulowska Z, Kulig A, Szpakowski M et al (2010b) Production of cytokines during interaction of peripheral blood mononuclear cells with autologous ovarian cancer cells or benign ovarian tumour cells. Scand J Immunol 71:91–98

    Article  CAS  PubMed  Google Scholar 

  • Numasaki M, Fukushi JI, Ono M, Narula SK, Zavodny PJ, Kudo T et al (2003) Interleukin-17 promotes angiogenesis and tumor growth. Blood 101:2620–2627

    Article  CAS  PubMed  Google Scholar 

  • O’Neill ASDW, Bhardwaj N (2004) Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood 104:2235–2246

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly LA, Print C, Hausmann G, Moriishi K, Cory S, Huang DC et al (2001) Tissue expression and subcellular localization of the pro-survival molecule Bcl-w. Cell Death Differ 8:486–494

    Article  PubMed  CAS  Google Scholar 

  • Olkhanud PB, Damdinsuren B, Bodogai M, Gress RE, Sen R, Wejksza K et al (2011) Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4+ T cells to T regulatory cells. Cancer Res 71:3505–3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF- 1/CXCL12 secretion. Cell 121:335–348. https://doi.org/10.1016/j.cell.2005.02.034

    Article  CAS  PubMed  Google Scholar 

  • Oskarsson T, Batlle E, Massague J (2014) Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell 14(3):306–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ossowski L, Aguirre-Ghiso JA (2010) Dormancy of metastatic melanoma. Pigment Cell Melanoma Res 23:41–62

    Article  PubMed  Google Scholar 

  • Östman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth—bystanders turning into key players. Curr Opin Genet Dev 19:67–73

    Article  PubMed  CAS  Google Scholar 

  • Östman A, Heldin CH (2007) PDGF receptors as targets in tumor treatment. Adv Cancer Res 97:247–274

    Article  PubMed  CAS  Google Scholar 

  • Ostrand-Rosenberg S (2008) Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev 18:11–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Páez D, Labonte MJ, Bohanes P, Zhang W, Benhanim L, Ning Y et al (2012) Cancer dormancy: a model of early dissemination and late cancer recurrence. Clin Cancer Res 18:645–653

    Article  PubMed  Google Scholar 

  • Palucka K, Ueno H, Fay J, Banchereau J (2011) Dendritic cells and immunity against cancer. J Intern Med 269:64–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Cheon S, Cho D (2007) The dual effects of Interleukin-18 in tumor progression. Cell Molecul Immunol 4:329–335

    CAS  Google Scholar 

  • Peli J, Schröter M, Rudaz C, Hahne M, Meyer C, Reichmann E et al (1999) Oncogenic Ras inhibits Fas ligand-mediated apoptosis by downregulating the expression of Fas. EMBO J 18:1824–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccin A, Murphy WG, Smith OP (2007) Circulating microparticles: pathophysiology and clinical implications. Blood Rev 21:157–171

    Article  CAS  PubMed  Google Scholar 

  • Pistoia V, Morandi F, Wang X, Ferrone S (2007) Soluble HLA-G: are they clinically relevant? Semin Cancer Biol 17:469–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piver MS, Mettlin CJ, Tsukada Y, Nasca P, Greenwald P, McPhee ME (1984) Familial ovarian cancer registry. Obstet Gynecol 64:195–199

    CAS  PubMed  Google Scholar 

  • Poggi A, Zocchi MR (2006) Mechanisms of tumor escape: role of tumor microenvironment in inducing apoptosis of cytolytic effector cells. Arch Immunol Ther Exp 54:323–333

    Article  CAS  Google Scholar 

  • Poste G, Nicolson GL (1980) Arrest and metastasis of blood-borne tumor cells are modified by fusion of plasma membrane vesicles from highly metastatic cells. Proc Natl Acad Sci U S A 77:399–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell JD, Horton MR (2005) Threat matrix: low-molecular-weight hyaluronan (HA) as a danger signal. Immunol Res 31:207–218

    Article  CAS  PubMed  Google Scholar 

  • Pratap A, Panakanti R, Yang N, Eason JD, Mahato RI (2010) Inhibition of endogenous hedgehog signaling protects against acute liver injury after ischemia reperfusion. Pharm Res 27:2492–2504

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinovich A, Medina L, Piura B, Huleihel M (2010) Expression of IL-10 in human normal and cancerous ovarian tissues and cells. Eur Cytokine Netw 21:122–128

    CAS  PubMed  Google Scholar 

  • Raffo AJ, Perlman H, Chen MW, Day ML, Streitman JS, Buttyan R (1995) Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res 55:4438–4445

    CAS  PubMed  Google Scholar 

  • Raghunand N, Gatenby RA, Gillies RJ (2003) Microenvironmental and cellular consequences of altered blood flow in tumours. Br J Radiol 76:S11–S22

    Article  PubMed  Google Scholar 

  • Ranganathan AC, Adam AP, Aguirre-Ghiso JA (2006) Opposing roles of Mitogenic and stress signaling pathways in the induction of cancer dormancy. Cell Cycle 5:1799–1807

    Article  CAS  PubMed  Google Scholar 

  • Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790

    Article  CAS  PubMed  Google Scholar 

  • Reesink-Peters N, Hougardy BM, van den Heuvel FA, Ten Hoor KA, Hollema H, Boezen HM et al (2005) Death receptors and ligands in cervical carcinogenesis: an immunohistochemical study. Gynaecol Oncol 96:705–713

    Article  CAS  Google Scholar 

  • Reiman JM, Kmieciak M, Manjili MH, Knutson KL (2007) Tumor Immunoediting and Immunosculpting pathways to cancer progression. Semin Cancer Biol 17:275–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribas A, Shin DS, Zaretsky J, Frederiksen J, Cornish A, Avramis E et al (2016) PD-1 blockade expands intratumoral memory T cells. Cancer Immunol Res 4(3):194–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez PC, Ochoa AC (2006) T cell dysfunction in cancer: role of myeloid cells and tumor cells regulating amino acid availability and oxidative stress. Semin Cancer Biol 16:66–72

    Article  CAS  PubMed  Google Scholar 

  • Ryan AE, Shanahan F, O’Connel J, Houston AM (2005) Addressing the “Fas counterattack” controversy: blocking Fas ligand expression suppresses tumor immune evasion of colon cancer in vivo. Cancer Res 65:9817–9823

    Article  CAS  PubMed  Google Scholar 

  • Safaei R, Larson BJ, Cheng TC, Gibson MA, Otani S, Naerdemann W et al (2005) Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther 4:1595–1604

    Article  CAS  PubMed  Google Scholar 

  • Saikali Z, Setya H, Singh G, Persad S (2008) Role of IGF-1/IGF-1R in regulation of invasion in DU145 prostate cancer cells. Cancer Cell Int 8:10. https://doi.org/10.1186/1475-2867-8-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santin AD, Bellone S, Ravaggi A, Roman J, Smith CV, Pecorelli S et al (2001a) Increased levels of interleukin-10 and transforming growth factor-β in the plasma and ascitic fluid of patients with advanced ovarian cancer. BJOG 108:804–808

    CAS  PubMed  Google Scholar 

  • Santin AD, Hermonat PL, Ravaggi A, Bellone S, Roman JJ, Smith CV et al (2001b) Phenotypic and functional analysis of tumor-infiltrating lymphocytes compared with tumor-associated lymphocytes from ascitic fluid and peripheral blood lymphocytes in patients with advanced ovarian cancer. Gynecol Obstet Investig 51:254–261

    Article  CAS  Google Scholar 

  • Sapi E (2004) The role of CSF-1 in normal physiology of mammary gland and breast cancer: an update. Exp Biol Med (Maywood) 229:1–11

    Article  CAS  Google Scholar 

  • Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    Article  CAS  PubMed  Google Scholar 

  • Schreiber H, Wu TH, Nachman J, Rowley DA (2000) Immunological enhancement of primary tumor development and its prevention. Sem Cancer Biol. 10:351–357

    Article  CAS  Google Scholar 

  • Seliger B (2008) Molecular mechanisms of MHC class I abnormalities and APM components in human tumors. Cancer Immunol Immunother 57:1719–1726

    Article  CAS  PubMed  Google Scholar 

  • Seliger B, Maeurer MJ, Ferrone S (2000) Antigen-processing machinery breakdown and tumor growth. Immunol Today 21:455–464

    Article  CAS  PubMed  Google Scholar 

  • Seo N, Hayakawa S, Tokura Y (2002) Mechanisms of immune privilege for tumor cells by regulatory cytokines produced by innate and acquired immune cells. Sem Cancer Biol 12:291–300

    Article  CAS  Google Scholar 

  • Serafini P, De Santo C, Marigo I, Cingarlini S, Dolcetti L, Gallina G et al (2004) Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother 53:64–72

    Article  CAS  PubMed  Google Scholar 

  • Serafini P, Borrello I, Bronte V (2006) Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16:53–65

    Article  CAS  PubMed  Google Scholar 

  • Shan W, Yang G, Liu J (2009) The inflammatory network: bridging senescent stroma and epithelial tumorigenesis. Front Biosci 14:4044–4057

    Article  CAS  PubMed Central  Google Scholar 

  • Sharma MD, Hou DY, Liu Y, Koni PA, Metz R, Chandler P et al (2009) Indoleamine 2,3 dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 113:6102–6111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shedden K, Xie XT, Chandaroy P, Chang YT, Rosania GR (2003) Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Res 63:4331–4337

    CAS  PubMed  Google Scholar 

  • Shen XG, Wang C, Li Y, Wang L, Zhou B, Xu B et al (2010) Downregulation of caspase-9 is a frequent event in patients with stage II colorectal cancer and correlates with poor clinical outcome. Color Dis 12:1213–1218

    Article  Google Scholar 

  • Sheu JJC, Shih IM (2007) Clinical and biological significance of HLA-G expression in ovarian cancer. Semin Cancer Biol 17:436–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521

    Article  CAS  PubMed  Google Scholar 

  • Shin MS, Kim HS, Lee SH, Lee JW, Song YH, Kim YS et al (2002) Alterations of Fas-pathway genes associated with nodal metastasis in non-small cell lung cancer. Oncogene 21:4129–4136

    Article  CAS  PubMed  Google Scholar 

  • Shiozawa Y, Nie B, Pienta KJ, Morgan TM, Taichman R (2013) Cancer stem cells and their role in metastasis. Pharmacol Ther 138(2):285–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sica A, Allavena P, Mantovani A (2008) Cancer related inflammation: the macrophage connection. Cancer Lett 264:204–215

    Article  CAS  Google Scholar 

  • Sica A, Porta C, Morlacchi S, Banfi S, Strauss L, Rimoldi M et al (2012) Origin and functions of tumor-associated myeloid cells (TAMCs). Cancer Microenviron 5:133–149

    Article  CAS  PubMed  Google Scholar 

  • Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S (2007a) Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179:977–983

    Article  CAS  PubMed  Google Scholar 

  • Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007b) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513

    Article  CAS  PubMed  Google Scholar 

  • Siveen KS, Kuttan G (2009) Role of macrophages in tumour progression. Immunol Lett 123:97–102

    Article  CAS  PubMed  Google Scholar 

  • Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA (2000) Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 192:755–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosa MS, Bragado P, Aguirre-Ghiso JA (2014) Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer 14:611–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosa MS, Parikh F, Maia AG, Estrada Y, Bosch A, Bragado P et al (2015) NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programs. Nat Commun 6:6170. https://doi.org/10.1038/ncomms7170

    Article  CAS  PubMed  Google Scholar 

  • Srivastava MK, Andersson Å, Zhu L, Harris-White M, Lee JM, Dubinett S et al (2012) Myeloid suppressor cells and immune modulation in lung cancer. Immunotherapy 4:291–304

    Article  CAS  PubMed  Google Scholar 

  • Stecca B, Mas C, Clement V, Zbinden M, Correa R, Piguet V et al (2007) Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci U S A 104:5895–5900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinman L (2007) A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 13:139–145

    Article  CAS  PubMed  Google Scholar 

  • Stewart TH, Hollinshead AC, Raman S (1991) Tumor dormancy: initiation, maintenance and termination in animals and humans. Can J Surg 134:321–325

    Google Scholar 

  • Su X, Ye J, Hsueh EC, Zhang Y, Hoft DF, Peng G (2010) Tumor microenvironments direct the recruitment and expansion of human Th17 cells. J Immunol 184:1630–1641

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Miao X, Zhang X, Tan W, Xiong P, Lin D (2004) Polymorphisms of death pathway genes FAS and FASL in esophageal squamous-cell carcinoma. J Natl Cancer Inst 96:1030–1036

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A (2004) Vascular endothelial growth factor inhibits maturation of dendritic cells induced by lipopolysaccharide, but not by proinflammatory cytokines. Cancer Immunol Immunother 53:543–550

    Article  CAS  PubMed  Google Scholar 

  • Takita J, Yang HW, Chen YY, Hanada R, Yamamoto K, Teitz T et al (2001) Allelic imbalance on chromosome 2q and alterations of the caspase 8 gene in neuroblastoma. Oncogene 20:4424–4432

    Article  CAS  PubMed  Google Scholar 

  • Taylor J, Hickson J, Lotan T, Yamada DS, Rinker-Schaeffer C (2008) Using metastasis suppressor proteins to dissect interactions among cancer cells and their microenvironment. Cancer Metastasis Rev 27:67–73

    Article  PubMed  Google Scholar 

  • Teng MWL, Swann JB, Koebel CM, Schreiber RD, Smyth MJ (2008) Immune-mediated dormancy: an equilibrium with cancer. J Leukoc Biol 84:988–993

    Article  CAS  PubMed  Google Scholar 

  • Terabe M, Berzofsky JA (2008) The role of NKT cells in tumor immunity. Adv Cancer Res 101:277–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F et al (2010) Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29:482–491

    Article  CAS  PubMed  Google Scholar 

  • Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579

    Article  CAS  PubMed  Google Scholar 

  • Thomsen LL, Miles DW (1998) Role of nitric oxide in tumour progression: lessons from human tumours. Cancer Metastasis Rev 7:107–118

    Article  Google Scholar 

  • Tiram G, Segal E, Krivitsky A, Shreberk-Hassidim R, Ferber S, Ofek P et al (2016) Identification of dormancy-associated MicroRNAs for the design of osteosarcoma-targeted dendritic polyglycerol nanopolyplexes. ACS Nano 10:2028–2045

    Article  CAS  PubMed  Google Scholar 

  • Töpfer K, Kempe S, Müller N, Schmitz M, Bachmann M, Cartellieri M et al (2011) Tumor evasion from T cell surveillance. J Biomed Biotechnol. https://doi.org/10.1155/2011/918471

  • Tse BWC, Scott KF, Russell PJ (2012) Paradoxical roles of tumour necrosis factor-alpha in prostate cancer biology. Prostate Cancer 2012:128965. https://doi.org/10.1155/2012/128965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhr JW, Pantel K (2011) Controversies in clinical cancer dormancy. PNAS 108:12396–12400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urosevic M, Dummer R (2003) HLA-G and IL-10expression in human cancer-different stories with the same message. Semin Cancer Biol 13:337–342

    Article  CAS  PubMed  Google Scholar 

  • Urosevic M, Dummer R (2008) Human leukocyte antigen–G and cancer Immunoediting. Cancer Res 68:627–630

    Article  CAS  PubMed  Google Scholar 

  • Uslu R, Sanli UA, Dikmen Y, Karabulut B, Ozsaran A, Sezgin C et al (2005) Predictive value of serum interleukin-8 levels in ovarian cancer patients treated with paclitaxel-containing regimens. Int J Gynecol Cancer 15:240–245

    Article  CAS  PubMed  Google Scholar 

  • Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A et al (2006) Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-betamediated suppressive activity on T lymphocytes. Cancer Res 66:9290–9298

    Article  CAS  PubMed  Google Scholar 

  • Valenti R, Huber V, Iero M, Filipazzi P, Parmiani G, Rivoltini L (2007) Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res 67:2912–2915

    Article  CAS  PubMed  Google Scholar 

  • Vikhanskaya F, Lee MK, Mazzoletti M, Broggini M, Sabapathy K (2007) Cancer derived p53 mutants suppress p53-target gene expression–potential mechanism for gain of function of mutant p53. Nucl Acids Res 35:2093–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Visser KE, Korets LV, Coussens LM (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7:411–423

    Article  PubMed  CAS  Google Scholar 

  • Volkmann M, Schiff JH, Hajjar Y, Otto G, Stilgenbauer F, Fiehn W et al (2001) Loss of CD95 expression is linked to most but not all p53 mutants in European hepatocellular carcinoma. J Molec Med 79:594–600

    Article  CAS  PubMed  Google Scholar 

  • Volm M, Koomagi R (2000) Prognostic relevance of c-Myc and caspase-3 for patients with non-small cell lung cancer. Oncol Rep 7:95–98

    CAS  PubMed  Google Scholar 

  • Waldner MJ, Foersch S, Neurath MF (2012) Interleukin-6—a key regulator of colorectal cancer development. Int J Biol Sci 8:1248–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walz A, Peveri P, Aschauer H, Baggiolini M (1987) Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem Biophys Res Commun 149:755–761

    Article  CAS  PubMed  Google Scholar 

  • Wang D, DuBois RN (2006) Prostaglandins and cancer. Gut 55:115–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Deavers M, Patenia R, Bassett RL Jr, Mueller P, Ma Q et al (2006) Monocyte/macrophage and T-cell infiltrates in peritoneum of patients with ovarian cancer or benign pelvic disease. J Transl Med 4:30–41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang K, Pan L, Che X, Cui D, Li C (2010) Gli1 inhibition induces cell-cycle arrest and enhanced apoptosis in brain glioma cell lines. J Neuro-Oncol 98:319–327

    Article  CAS  Google Scholar 

  • Wang X, Teng F, Kong L, Yu J (2016) PD-L1 expression in human cancers and its association with clinical outcomes. OncoTargets Ther 9:5023–5039

    Article  CAS  Google Scholar 

  • Watson KL, Jones RA, Anthony B, Moorehead RA (2018) The miR-200b/200a/429 cluster prevents metastasis and induces dormancy in a murine claudin-low mammary tumor cell line. Exp Cell Res 369:17–36

    Article  CAS  PubMed  Google Scholar 

  • Whiteside TL (2006) Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol 16:3–15

    Article  CAS  PubMed  Google Scholar 

  • Whiteside TL (2010) Immune responses to malignancies. J Allergy Clin Immunol 125:272–283

    Article  Google Scholar 

  • Whiteside TL, Mandapathil M, Szczepanski M, Szajnik M (2011) Mechanisms of tumor escape from the immune system: adenosine-producing Treg, exosomes and tumor-associated TLRs. Bull Cancer 98:E25–E31

    Article  PubMed  Google Scholar 

  • Wilczyński JR, Duechler M (2010) How tumor actively escape from host immunosurveillance? Arch Immunol Ther Exper 58:435–448

    Article  CAS  Google Scholar 

  • Wilczynski JR, Kalinka J, Radwan M (2008) The role of T-regulatory cells in pregnancy and cancer. Front Biosci 13:2275–2289

    Article  CAS  PubMed  Google Scholar 

  • Woenckhaus C, Giebel J, Failing K, Fenic I, Dittberner T, Poetsch M (2003) Expression of AP-2alpha, c-kit, and cleaved caspase-6 and -3 in naevi and malignant melanomas of the skin. A possible role for caspases in melanoma progression? J Pathol 201:278–287

    Article  CAS  PubMed  Google Scholar 

  • Wojtowicz-Praga S (2003) Reversal of tumor-induced immunosuppression by TGF-beta inhibitors. Investig New Drugs 21:21–32

    Article  CAS  Google Scholar 

  • Wong RSY (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wysoczynski M, Ratajczak MZ (2009) Lung cancer secreted microvesicles: underappreciated modulators of microenvironment in expanding tumors. Int J Cancer 125:1595–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J et al (2009) Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer 124:2621–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao G, Deng A, Liu H, Ge G, Liu X (2012) Activator protein 1 suppresses antitumor T-cell function via the induction of programmed death 1. PNAS 109:15419–15424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Fidler IJ (2000) Interleukin 8: an autocrine growth factor for human ovarian cancer. Oncol Res 12:97–106

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Pathak PS, Fukumura D (2004) Hypoxia-induced activation of p38 mitogen-activated protein kinase and phosphatidylinositol 3′-kinase signaling pathways contributes to expression of interleukin 8 in human ovarian carcinoma cells. Clin Cancer Res 10:701–707

    Article  CAS  PubMed  Google Scholar 

  • Xue H, Liu J, Lin B, Wang Z, Sun J, Huang G (2012) A meta-analysis of Interleukin-8 -251 promoter polymorphism associated with gastric cancer risk. PLoS One 7:e28083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagawa J, Walser TC, Zhu LX, Hong L, Fishbein MC, Mah V et al (2009) Snail promotes CXCR2 ligand-dependent tumor progression in non-small cell lung carcinoma. Clin Cancer Res 15:6820–6829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Rosen DG, Liu G, Yang F, Guo X, Xiao X et al (2010) CXCR2 promotes ovarian cancer growth through dysregulated cell cycle, diminished apoptosis, and enhanced angiogenesis. Clin Cancer Res 16:3875–3886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo YA, Kang MH, Kim JS, Oh SC (2008) Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-{beta}-mediated activation of the ALK5-Smad 3 pathway. Carcinogenesis 29:480–490

    Article  CAS  PubMed  Google Scholar 

  • Yoon JW, Kita Y, Frank DJ, Majewski RR, Konicek BA, Nobrega MA et al (2002) Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation. J Biol Chem 277:5548–5555

    Article  CAS  PubMed  Google Scholar 

  • Yu P, Rowley DA, Fu YX, Schreiber H (2006) The role of stroma in immune recognition and destruction of well-established solid tumors. Curr Opin Immunol 18:226–231

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Riley T, Levine AJ (2009) The regulation of the endosomal compartment by p53 the tumor suppressor gene. FEBS 276:2201–2212

    Article  CAS  Google Scholar 

  • Zhang H, Sun XF (2002) Overexpression of cyclooxygenase-2 correlates with advanced stages of colorectal cancer. Am J Gastroenterol 97:1037–1041

    Article  CAS  PubMed  Google Scholar 

  • Zhang HG, Zhuang X, Sun D, Liu Y, Xiang X, Grizzle WE (2012) Exosomes and immune surveillance of neoplastic lesions: a review. Biotech Histochem 87:161–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhivotovsky B, Orrenius S (2006) Carcinogenesis and apoptosis: paradigms and paradoxes. Carcinogenesis 27:1939–1945

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Borillo J, Wu J, Torres L, Lou YH (2004) Ovarian expression of chemokines and their receptors. J Reprod Immunol 63:1–9

    Article  CAS  PubMed  Google Scholar 

  • Zwicker JI, Liebman HA, Neuberg D, Lacroix R, Bauer KA, Furie BC et al (2009) Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res 15:6830–6840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek R. Wilczyński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilczyński, J.R., Nowak, M. (2022). Cancer Immunoediting: Elimination, Equilibrium, and Immune Escape in Solid Tumors. In: Klink, M., Szulc-Kielbik, I. (eds) Interaction of Immune and Cancer Cells. Experientia Supplementum, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-030-91311-3_1

Download citation

Publish with us

Policies and ethics