Skip to main content

Detection of High Energy Neutrinos on the Earth

  • Chapter
  • First Online:
High Energy Astrophysical Neutrinos

Part of the book series: SpringerBriefs in Astronomy ((BRIEFSASTRON))

  • 277 Accesses

Abstract

Neutrinos are the most weakly-interacting particles they can escape from dense interior of cosmic objects, which are opaque to electromagnetic waves. They are not deflected by magnetic fields in their path as they are charge-less. They point back to their sources of origin. At very high energies number of cosmic neutrinos arrive on Earth are very few. Some of these VHE neutrinos will interact with a nucleus and produce charged particles. These secondary particles will produce Cherenkov lights in a transparent medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://gcn.gsfc.nasa.gov/gcn3/21916.gcn3.

References

  1. M.A. Markov, I.M. Zheleznykh, Nucl. Phys. 27, 385–394 (1961)

    Article  Google Scholar 

  2. A. Roberts, Rev. Mod. Phys. 64, 259–312 (1992)

    Article  ADS  Google Scholar 

  3. https://icecube.wisc.edu/wp-content/uploads/2020/11/IceCubeDesignDoc.pdf

  4. J. Ahrens et al., Astropart. Phys. 20, 507–532 (2004)

    Article  ADS  Google Scholar 

  5. J. Aguilar et al., Astropart. Phys. 26, 314–324 (2006)

    Article  ADS  Google Scholar 

  6. E. Migneco, J. Phys. Conf. Ser. 136, 022048 (2008)

    Google Scholar 

  7. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)

    MATH  Google Scholar 

  8. J.V. Jelly, Cherenkov Radiation (Pergamon, New York, 1958)

    Google Scholar 

  9. P.A. Cerenkov, Phys. Rev. 52, 378–379 (1937)

    Article  ADS  Google Scholar 

  10. I. Frank, I. Tamm, C. R. Acad. Sci. USSR 14, 109–114 (1937)

    Google Scholar 

  11. M. Ahlers, F. Halzen, Rep. Prog. Phys. 78, 126901 (2015)

    Article  ADS  Google Scholar 

  12. http://pdg.lbl.gov/2013/Atomic Nuclear

  13. L. Radel, C. Wiebusch, Astropart. Phys. 38, 53–67 (2012)

    Article  ADS  Google Scholar 

  14. The ANTARES Collaboration, arXiv:astro-ph/9907432 (1999)

  15. D. Chirkin, W. Rhode, hep-ph/0407075 (2004)

    Google Scholar 

  16. F. Halzen, S.R. Klein, Phys. Today 61(5), 29 (2008)

    Article  ADS  Google Scholar 

  17. F. Halzen, https://www.trisep.ca/2018/program/trisep_halzen_061918.pdf

  18. M.G. Aartsen et al., Phys. Rev. Lett. 115, 081102 (2015)

    Article  ADS  Google Scholar 

  19. T.K. Gaisser, E. Resconi, O. Schulz, Phys. Rev. D 79, 043009 (2009)

    Article  ADS  Google Scholar 

  20. M.G. Aartsen et al., Phys. Rev. Lett. 111, 021103 (2013)

    Article  ADS  Google Scholar 

  21. R. Abbasi et al., Phys. Rev. D. 104, 022002 (2021)

    Article  ADS  Google Scholar 

  22. M.G. Aartsen, et al. arXiv:1710.01191 (2017)

  23. M.G. Aartsen et al., Eur. Phys. J. C 79(3), 234 (2019)

    Article  ADS  Google Scholar 

  24. J. Stettner, PoS ICRC2019, 1017 (2020)

    Google Scholar 

  25. M.G. Aartsen et al., Phys. Rev. Lett. 125, 121104 (2020)

    Article  ADS  Google Scholar 

  26. M.G. Aartsen, et al. [IceCube], Astrophys. J. 809(1), 98 (2015). arXiv:1507.03991 [astro-ph.HE]

  27. T. Glüsenkamp, EPJ Web Conf. 121, 05006 (2016)

    Article  Google Scholar 

  28. J. Stachurska, EPJ Web Conf. 207, 02005 (2019)

    Article  Google Scholar 

  29. M.G. Aartsen, et al., Science, 361, eaat1378 (2018)

    Google Scholar 

  30. M.G. Aartsen et al., Science 361, 147–151 (2018)

    Article  ADS  Google Scholar 

  31. Robert Stein et al., Nat. Astron. 5(5), 510–518 (2021)

    Article  ADS  Google Scholar 

  32. M.G. Aartsen, et al. [IceCube], Nature 591(7849), 220–224 (2021) [erratum: Nature 592(7855), E11 (2021)]

    Google Scholar 

  33. J.A. Aguilar et al., Astropart. Phys. 23, 131 (2005)

    Article  ADS  Google Scholar 

  34. S. Adrian-Martinez et al., Astrophys. J. 786, L5 (2014)

    Article  ADS  Google Scholar 

  35. S. Adrian-Martinez et al., Astrophys. J. 760, 53 (2012)

    Article  ADS  Google Scholar 

  36. A. Albert et al., Phys. Rev. D 96, 062001 (2017)

    Article  ADS  Google Scholar 

  37. A. Albert et al., Astrophys. J. 892, 92 (2020)

    Article  ADS  Google Scholar 

  38. A. Albert et al., Astrophys. J. Lett. 850, 35 (2017)

    Article  ADS  Google Scholar 

  39. A. Albert et al., Astrophys. J. 870, 134 (2019)

    Article  ADS  Google Scholar 

  40. A. Albert et al., Astrophys. J. Lett. 863, 30 (2018)

    Article  ADS  Google Scholar 

  41. S. Adrián-Martínez et al., JCAP 12, 014 (2015)

    ADS  Google Scholar 

  42. M.G. Aartsen et al., J. Phys. G 48(6), 060501 (2021)

    Article  ADS  Google Scholar 

  43. M.G. Aartsen et al., arXiv:1510.05228 (2015)

  44. M.G. Aartsen et al., J. Phys. G 44, 054006 (2017)

    Article  ADS  Google Scholar 

  45. S. Adrian-Martinez et al., J. Phys. G 43(8), 084001 (2016)

    Article  ADS  Google Scholar 

  46. A.D. Avrorin et al. Phys. Part. Nucl. 46(2), 211–221 (2015)

    Google Scholar 

  47. M. Agostini, M. Böhmer, J. Bosma et al., Nat. Astron. 4(10), 913–915 (2020)

    Article  ADS  Google Scholar 

  48. G.A. Askaryan, JETP 14, 2 (1962); 48, 988 (1965)

    Google Scholar 

  49. M.A. Markov et al., Nucl. Inst. Methods A 248, 242 (1986)

    Article  ADS  Google Scholar 

  50. E. Zas, F. Halzen, T. Stanev, Phys. Rev. D. 45, 1 (1992)

    Article  Google Scholar 

  51. D. Saltzberg et al., Phys. Rev. Lett. 86, 2802–2805 (2001)

    Article  ADS  Google Scholar 

  52. P.W. Gorham et al., Phys. Rev. D 72, 023002 (2005)

    Article  ADS  Google Scholar 

  53. P.W. Gorham et al., Phys. Rev. Lett. 99, 171101 (2007)

    Article  ADS  Google Scholar 

  54. P.W. Gorham et al., Phys. Rev. Lett. 117, 071101 (2016)

    Article  ADS  Google Scholar 

  55. P.W. Gorham et al., Phys. Rev. D. 98, 022001 (2018)

    Article  ADS  Google Scholar 

  56. P.W. Gorham et al., Phys. Rev. Lett. 121, 161102 (2018)

    Article  ADS  Google Scholar 

  57. M.G. Aartsen et al., Astrophys. J. 892, 53 (2020)

    Article  ADS  Google Scholar 

  58. P. Allison et al., Astropart. Phys. 35, 457–477 (2012)

    Article  ADS  Google Scholar 

  59. P. Allison et al., Astropart. Phys. 70, 62 (2015)

    Article  ADS  Google Scholar 

  60. S.W. Barwick et al., Astropart. Phys. 70, 12 (2015)

    Article  ADS  Google Scholar 

  61. H.R. Allan, J.K. Jones, Nature 212, 129 (1964)

    Article  ADS  Google Scholar 

  62. P.W. Gorham, C.L. Hebert, K.M. Liewer et al., Phys. Rev. Lett. 93, 041101 (2004)

    Article  ADS  Google Scholar 

  63. S. Buitink et al., AIP Conf. Proc. 1535, 27 (2013)

    Article  ADS  Google Scholar 

  64. T. Huege et al., PoS, ICRC2015, 309

    Google Scholar 

  65. The Pierre Auger Collaboration, in Advances in High Energy Physics, 708680 (2013)

    Google Scholar 

  66. A. Aab et al., JCAP 11, 4 (2019)

    Article  ADS  Google Scholar 

  67. The LIGO Scientific Collaboration, Class. Quantum Grav. 32, 074001 (2015)

    Article  ADS  Google Scholar 

  68. F. Acernese et al., Class. Quantum Grav. 32, 024001 (2015)

    Article  ADS  Google Scholar 

  69. G.A. Askaryan et al., Nucl. Instr. and Meth. A 164, 267 (1979)

    Article  ADS  Google Scholar 

  70. J.G. Learned, Phys. Rev. D. 19, 3293 (1979)

    Article  ADS  Google Scholar 

  71. R. Lahmann, G. Anton et al., Astropart. Phys., 65 (2015), 69

    Google Scholar 

  72. R. Lahmann, Nucl. Part. Phys. Proc. 273–275, 406–413 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debanjan Bose .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bose, D., Rakshit, S. (2021). Detection of High Energy Neutrinos on the Earth. In: High Energy Astrophysical Neutrinos. SpringerBriefs in Astronomy. Springer, Cham. https://doi.org/10.1007/978-3-030-91258-1_3

Download citation

Publish with us

Policies and ethics