Skip to main content

Abstract

Bone fracture healing after trauma generally progresses through a three-step process, including an inflammatory phase, a proliferative phase, and a remodeling phase. Ultrasound (US) could be a useful tool for the monitoring of this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Further Readings

  • Augat P, et al. Imaging techniques for the assessment of fracture repair. Injury. 2014;45(Suppl 2):S16–22.

    Article  Google Scholar 

  • Augat P, et al. Quantitative assessment of experimental fracture repair by peripheral computed tomography. Calcif Tissue Int. 1997;60(2):194–9.

    Article  CAS  Google Scholar 

  • Caruso G, et al. Monitoring of fracture callus with color Doppler sonography. J Clin Ultrasound. 2000;28(1):20–7.

    Article  CAS  Google Scholar 

  • De Marchi A, et al. Perfusion pattern and time of vascularization with CEUS increase accuracy of differentiating between benign and malignant tumours in 216 musculoskeletal soft tissue masses. Eur J Radiol. 2015;84:142–50.

    Article  Google Scholar 

  • De Marchi A, et al. Study of neurinomas with ultrasound contrast media: review of a case series to identify characteristics imaging patterns. Radiol Med. 2011;116:634–43.

    Article  Google Scholar 

  • Den Boer F. Quantification of fracture healing with three-dimensional computed tomography. Arch Orthop Trauma Surg. 1998;117:345–50.

    Article  Google Scholar 

  • Firoozabadi R, et al. Qualitative and quantitative assessment of bone fragility and fracture healing using conventional radiography and advanced imaging technologies – focus on wrist fracture. J Orthop Trauma. 2008;22(8 Suppl):S83–90.

    Article  Google Scholar 

  • Fischer C, et al. Dynamic contrast enhanced sonography and dynamic contrast-enhanced magnetic resonance imaging for preoperative diagnosis of infected nonunions. J Ultrasound Med. 2016;35:933–42.

    Article  Google Scholar 

  • Fleicher AC. Sonographic depiction of tumor vascularity and flow; from in vivo models to clinical applications. J Ultrasound Med. 2000;19(1):55–61.

    Article  Google Scholar 

  • Giannoudis PV, et al. The diamond concept—open questions. Injury. 2008;39(Suppl 2):S5–8.

    Article  Google Scholar 

  • Hamblen D, Simpson AH. Outline of fractures. 12th ed. London, UK: Churchill Livingstone; 2007.

    Google Scholar 

  • Haubruck P, et al. A preliminary study of contrast-enhanced ultrasound (CEUS) and cytokine expression analysis (CEA) as early predictors for the outcome of tibial nonunion therapy. Diagnostics (Basel). 2018;8:55.

    Article  CAS  Google Scholar 

  • Hijazy A, et al. Quantitative monitoring of bone healing process using ultrasound. J Franklin Inst. 343(4–5):495–500. Proceedings of the First International Conference on Modeling, Simulation and Applied Optimization, Sharjah, U.A.E. 2005; February 1–3

    Google Scholar 

  • Kang M-L, et al. Vascular endothelial growth factor transfected adipose-derived stromal cells enhance bone regeneration and neovascularization from bone marrow stromal cells. J Tissue Eng Regen Med. 2017;11:3337–48.

    Article  CAS  Google Scholar 

  • Krammer D, et al. Contrast enhanced ultrasound quantifies the perfusion within tibial non unions and predicts the outcome of revision surgery. Ultrasound Med Biol. 2018;44:1853–9.

    Article  Google Scholar 

  • Leunig M, et al. Quantitative assessment of angiogenesis and osteogenesis after transplantation of bone: comparison of isograft and allograft bone in mice. Acta Orthop Scand. 1999;70:374–80.

    Article  CAS  Google Scholar 

  • Jin L, et al. MD Studies of superb microvascular imaging and contrast-enhanced ultrasonography in the evaluation of vascularization in early bone regeneration. J Ultrasound Med. 2019;38:2963–71.

    Article  Google Scholar 

  • Moed BR, et al. Ultrasound for the early diagnosis of fracture healing after interlocking nailing of the tibia without reaming. Clin Orthop. 1995;310:137–44.

    Google Scholar 

  • Moed BR, et al. Ultrasound for the early diagnosis of tibial fracture healing after static inter- locked nailing without reaming: clinical results. J Orthop Trauma. 1998;12(3):206–13.

    Article  CAS  Google Scholar 

  • Moed BR, et al. Ultrasound for the early diagnosis of tibial fracture healing after static interlocked nailing without reaming: histologic correlation using a canine model. J Orthop Trauma. 1998;12:200–5.

    Article  CAS  Google Scholar 

  • Müller S, et al. Assessment of bone microcirculation by contrast-enhanced ultrasound (CEUS) and positron emission tomography/computed tomography in free osseous and osseocutaneus flaps for mandibular reconstruction: preliminary results. Clin Hemorheol Microcirc. 2016;49:115–28.

    Article  Google Scholar 

  • Orlandi D, et al. Advances power Doppler technique increase synovial vascularity detection in patients with rheumatoid arthritis. Ultrasound Med Biol. 2017;43:1880–7.

    Article  Google Scholar 

  • Park AY, et al. An innovative ultrasound technique for evaluation of tumor vascularity in breast cancers: superbmicro-vascular imaging. J Breast Cancer. 2016;19:210–3.

    Article  Google Scholar 

  • Pozza S, et al. Technical and clinical feasibility of contrast-enhanced ultrasound evaluation of long bone non-infected nonunion healing. Radiol Med. 2018;123:703–9.

    Article  Google Scholar 

  • Colier R, Donarski R. “Non-invasive method of measuring the resonant frequency of a human tibia in vivo”, part 1 & 2. J Biomed Eng. 1987;9:321–31.

    Article  Google Scholar 

  • Ross EF. 3D ultrasound for imaging components of musculoskeletal system. PhD thesis; 2009.

    Google Scholar 

  • Sun MH, et al. Three-dimensional high frequency power Doppler ultrasonography for the assess-ment of microvasculature during fracture healing in a rat model. J Orthop Res. 2012;30(1):137–43.

    Article  Google Scholar 

  • Blokhuis T, et al. The reliability of plain radiography in experimental fracture healing. Skelet Radiol. 2001;30:151–6.

    Article  CAS  Google Scholar 

  • Tall M. Treatment of aseptic tibial shaft nonunion without bone defect. Orthop Traumatol Surg Res. 2018;104:S63–9.

    Article  CAS  Google Scholar 

  • Yung JW, et al. Sonographic evaluation of bone production at distraction site in Ilizarov limb-lengthening procedures. AJR Am J Roentgenol. 1990;154(1):125–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Marchi, A., Orlandi, D., Silvestri, E., Cavagnaro, L., Muda, A. (2022). Bone Fracture Healing. In: Martino, F., Silvestri, E., Orlandi, D. (eds) Musculoskeletal Ultrasound in Orthopedic and Rheumatic disease in Adults. Springer, Cham. https://doi.org/10.1007/978-3-030-91202-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91202-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91201-7

  • Online ISBN: 978-3-030-91202-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics