Skip to main content

Security Approaches to SDN-Based Ad hoc Wireless Network Toward 5G Communication

  • Chapter
  • First Online:
Software Defined Networking for Ad Hoc Networks

Abstract

WSNs are especially vulnerable to persistent security threats due to their limited resources and their lack of a secured transmission medium. The WSN has an extensive network of resource constrained and self-organized sensor nodes. This type of sensor node tends to be set up in a spread-out way, which means you can build an ad hoc network without having to lay down specified infrastructure or control it from a central location. The advancing of fifth generation (5G) networks is turning out to be all the more promptly accessible as a significant driver of the development of new applications and plans of action. SDN addresses the critical empowering influences of 5G innovation with the advancement of cutting-edge smart vehicular organizations and applications. This work depicts the activity of the design and sums up the chance to accomplish network security in a more effective and adaptable way with SDN-based ad hoc networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Al-Shabibi. POX Wiki (Stanford University), [Online]. Available: https://openflow.stanford.edu/display/ONL/POXþWiki, last edited by Murphy McCauley on August 11, 2014

  2. A.C. Jane, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger, et al., NetkAT: semantic foundations for networks. POPL, 113e26 (2014)

    Google Scholar 

  3. G. Andersen David, H. Balakrishnan, F. Nick, T. Koponen, D. Moon, S. Shenker, Accountable internet protocol (AIP), in SIGCOMM’08; August 17e22, (Seattle, Washington, USA, 2008)

    Google Scholar 

  4. A. Olatunde, Periodic control update overheads in OpenFlow-based Enterprise networks, in IEEE 28th International Conference on Advanced Information Networking and Applications, (2014)

    Google Scholar 

  5. B. Kapil, Considerations for software-defined networking SDN: approaches and use cases, in Aerospace Conference, (IEEE, 2013), p. 1e9

    Google Scholar 

  6. B. Jeffrey, I. Rae, A. Akella, Extensible and scalable network monitoring using OpenSAFE, in Proceedings of the 2010 Internet Network Management Conference on Research on Enterprise Networking, ser. INM/WREN’10, (Berkeley, USENIX Association, 2010)

    Google Scholar 

  7. B.M. Faizul, S.R. Chowdhury, R. Ahmed, R. Boutaba, PolicyCop: an autonomic QoS policy enforcement framework for software-defined networks, in Software-defined networks for future networks and services (SDN4FNS), (2013)

    Google Scholar 

  8. B. John, E. Kroske, R. Farivar, M. Montanari, K. Larson, R. Campbell, NetODESSA: dynamic policy enforcement in cloud networks, in Proceedings of the 2011 IEEE 30th Symposium on Reliable Distributed Systems Workshops (SRDSW’11), (2011)

    Google Scholar 

  9. B. Kevin, J. Camp, C. Small, OpenFlow vulnerability assessment, in Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, (ACM, 2013), p. 151e2

    Google Scholar 

  10. B. Roberto, K. Ghassan, Towards a richer set of services in software-defined networks, in SENT’14; 23 February 2014. San Diego, CA, USA

    Google Scholar 

  11. B. Rodrigo, E. Mota, A. Passito, Lightweight DDoS flooding attack detection using NOX/OpenFlow, in Proceedings of the IEEE Conference on Local Computer Networks (LCN), Denver, CO, USA, 11e14 October 2010, (2010), p. 408e15

    Google Scholar 

  12. C. Martin, T. Garfinkel, A. Akella, M.J. Freedman, D. Boneh, N. McKeown, et al., SANE: a protection architecture for enterprise networks, in Proceedings of the 15th conference on USENIX Security Symposium. Ser. USENIXSS’06, Berkeley, CA, USA, vol. 15, (2006)

    Google Scholar 

  13. C. Martin, M. Freedman, J. Pettit, J. Luo, N. McKeown, S. Shenker, Ethane: taking control of the enterprise. ACM SIGCOMM Comput. Commun. Rev. 37(4), 1e12 (2007)

    Google Scholar 

  14. C. Martin, M. Freedman, J. Pettit, J. Luo, N. Gude, N. McKeown, et al., Rethinking enterprise network control. IEEE/ACM Transac. Netwrk. (TON) 17(4), 1270e83 (2009)

    Google Scholar 

  15. Choi Taesang, Song Sejun, Park Hyungbae, Yoon Sangsik, Yang Sunhee. SUMA: software-defined unified monitoring agent for SDN. NOMS; 2014a. p. 1e5

    Google Scholar 

  16. C. Taesang, S. Kang, S. Yoon, S. Yang, S. Song, H. Park, SuVMF: Software-Defined Unified Virtual Monitoring Function for SDN-Based Large-Scale Networks (CFI, 2014b)

    Google Scholar 

  17. C.S. Rahman, B.M. Faizul, A. Reaz, B. Raouf, PayLess: a low-cost network monitoring framework for software-defined networks. NOMS, 1e9 (2014)

    Google Scholar 

  18. C. YuHunag, M.C. Tseng, Y.T. Chen, Y.C. Chou, Y.R. Chen, A novel design for future on-demand service and security, in 12th IEEE International Conference on Communication Technology (ICCT), (2010)

    Google Scholar 

  19. C.-J. Chung, K. Pankaj, X. Tianyi, J. Lee, H. Dijiang, NICE: network intrusion detection and countermeasure selection in virtual network systems. IEEE Trans. Depend. Sec. Comput. TDSC 10(4) (2013a)

    Google Scholar 

  20. C.-J. Chung, C. JingSong, K. Pankaj, H. Dijiang, Non-intrusive process-based monitoring system to mitigate and prevent VM vulnerability explorations, in 9th IEEE International Conference on Collaborative Computing Networking Applications and Worksharing (CollaborateCom 2013), (2013)

    Google Scholar 

  21. C. Russ, F. Nick, N. Ankur, R. Alex, Pushing Enterprise Security Down the Network Stack. GT-CS-09e03 (Georgia Institute of Technology, 2009) Tech. Rep

    Google Scholar 

  22. C. Andrew, M. Jeffrey, T. Jean, Y. Praveen, S. Puneet, B. Sujata, DevoFlow: scaling flow management for high-performance networks. SIGCOMM Comput. Commun. Rev. 41(4), 254e65 (2011a)

    Google Scholar 

  23. C. Andrew, W. Kim, P. Yalagandula, Mahout: low-overhead datacenter traffic management using end-host-based elephant detection, in IEEE INFOCOM’11, (2011)

    Google Scholar 

  24. D. Vainius, K. Feliksas, SDN-driven authentication and access control system, in The International Conference on Digital Information, Networking, and Wireless Communications (DINWC), (2014), p. 20e3

    Google Scholar 

  25. C. DeCusatis, M. Haley, T. Bundy, R. Cannistra, R. Wallner, J. Parraga, et al., Dynamic, software-defined service provider network infrastructure and cloud drivers for SDN adoption, in IEEE International Conference on Communications 2013: IEEE ICC’13e2nd Workshop on Clouds. Networks and Data Centers, (2013)

    Google Scholar 

  26. C. Dillon, B. Michael, OpenFlow (D)DoS Mitigation. Technical report. (2014, February 9). http://www.delaat.net/rp/2013-2014/p42/report.pdf

  27. D.A. Yi, J. Crowcroft, S. Tarkoma, H. Flinck, Software-Defined Networking for Security Enhancement in Wireless Mobile Networks, vol 66 (Elsevier Computer Networks (COMNET), 2014)

    Google Scholar 

  28. Z. Qin, G. Denker, C. Giannelli, P. Bellavista, N. Venkatasubramanian, A software defined networking architecture for the internet-of-things, in 2014 IEEE Network Operations and Management Symposium (NOMS), Krakow, (2014), pp. 1–9

    Google Scholar 

  29. R. Kolcun, D. Boyle, J.A. McCann, Efficient in-network processing for a hardware-heterogeneous iot, in Proceedings of the 6th International Conference on the Internet of Things, (Stuttgart, Germany, 2016, November 07–09)

    Google Scholar 

  30. A. Hakiri, P. Berthou, A. Gokhale, S. Abdellatif, Publish/subscribe-enabled software-defined networking for efficient and scalable IoT communications. IEEE Commun. Magaz. 53(9), 48–54 (2015)

    Article  Google Scholar 

  31. N.B. Truong, G.M. Lee, Y. Ghamri-Doudane, Software defined networking-based vehicular Adhoc Network with Fog Computing, in 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), Ottawa, ON, (2015), pp. 1202–1207

    Chapter  Google Scholar 

  32. V.N. Gudivada, R. Baeza-Yates, V.V. Raghavan, Big data: promises and problems. Computer 48(3), 20–23 (2015, March)

    Article  Google Scholar 

  33. D. Kreutz, Software-defined networking: A comprehensive survey. Proc. IEEE 103, 14–76 (2015, January)

    Article  Google Scholar 

  34. W. Hong, K. Wang, Y.-H. Hsu, Application-aware resource allocation for sdn-based cloud datacenters, in Proceedings of the International Conference on Cloud Computing and Big Data 2013, (2013, December)

    Google Scholar 

  35. S. Yu, X. Lin, J. Misic, Networking for big data. IEEE Netwrk. 28(4), 4 (2014)

    Article  Google Scholar 

  36. S. Al-Sultan, M. Al-Doori, A.H. Al-Bayatti, et al., A comprehensive survey on vehicular ad hoc network. J. Netw. Comput. Appl. 37, 380–392 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devasis Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pradhan, D., Sahu, P.K., Ghonge, M.M., Rajeswari, Tun, H.M. (2022). Security Approaches to SDN-Based Ad hoc Wireless Network Toward 5G Communication. In: Ghonge, M.M., Pramanik, S., Potgantwar, A.D. (eds) Software Defined Networking for Ad Hoc Networks. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-91149-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91149-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91148-5

  • Online ISBN: 978-3-030-91149-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics