Skip to main content

Software-Defined Network-Based Vehicular Ad Hoc Networks: A Comprehensive Review

  • Chapter
  • First Online:
Software Defined Networking for Ad Hoc Networks

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

Abstract

Traditional networks, which are both complex and inflexible, are being challenged by the digital society as it advances. A programmable and flexible network that has recently captured the attention of both research communities and businesses, known as software-defined networking (SDN), first emerged in this context. Vehicular networks and software-defined networking (SDN) are important enabling technologies for 5G network deployments. Many researchers have examined SDN and VANET integration, looking at architectures, the usefulness of software-defined VANET services, and all the additional features that can be implemented. While the overall architecture’s security and robustness are questionable, few if any measures have been taken to secure and reinforce the specific pieces of the architecture. Adding to everything else, security threats and vulnerabilities are created when new entities and architectural components are deployed and integrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Cunha et al., Data communication in VANETs: protocols, applications and challenges. Ad Hoc Netw. 44, 90–103 (2016)

    Article  Google Scholar 

  2. W.-H. Lee, K.-P. Hwang, W.-B. Wu, An intersection-to-intersection travel time estimation and route suggestion approach using vehicular ad-hoc network. Ad. Hoc. Netw. 43, 71–81 (2016)

    Article  Google Scholar 

  3. A.N. Hassan et al., Inter vehicle distance based connectivity aware routing in vehicular Ad hoc networks. Wirel. Pers. Commun. 98(1), 33–54 (2018)

    Article  Google Scholar 

  4. C. Suthaputchakun, Z. Sun, Routing protocol in intervehicle communication systems: a survey. IEEE Commun. Mag. 49(12) (2011)

    Google Scholar 

  5. N. Noorani, S.A.H. Seno, Routing in VANETs based on intersection using SDN and fog computing, in 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE) (IEEE, 2018)

    Google Scholar 

  6. B.T. Sharef, R.A. Alsaqour, M. Ismail, Vehicular communication ad hoc routing protocols: a survey. J. Netw. Comput. Appl. 40, 363–396 (2014)

    Article  Google Scholar 

  7. S. Bera, S. Misra, A.V. Vasilakos, Software-defined networking for internet of things: A survey. IEEE Internet Things J. 4(6), 1994–2008 (2017)

    Article  Google Scholar 

  8. F.Z. Yousaf, M. Bredel, S. Schaller, F. Schneider, Nfv and sdn 2014; key technology enablers for 5g networks. IEEE J. Select. Areas Commun. 35(11), 2468–2478 (2017)

    Article  Google Scholar 

  9. K.-K. Yap, M. Kobayashi, R. Sherwood, T.-Y. Huang, M. Chan, N. Handigol, N. McKeown, Openroads: empowering research in mobile networks. SIGCOMM Comput. Commun. Rev. 40(1), 125–126 (2010)

    Article  Google Scholar 

  10. M. Kobayashi, S. Seetharaman, G. Parulkar, G. Appenzeller, J. Little, J. van Reijendam, P. Weissmann, N. McKeown, Maturing of openflow and software-defined networking through deployments. Comput. Netw. 61, 151–175 (2014)

    Article  Google Scholar 

  11. J. Vestin, P. Dely, A. Kassler, N. Bayer, H. Einsiedler, C. Peylo, Cloudmac: towards software defined wlans. SIGMOBILE Mob. Comput. Commun. Rev. 16(4), 42–45 (2013)

    Article  Google Scholar 

  12. B.A.A. Nunes, M. Mendonca, X.N. Nguyen, K. Obraczka, T. Turletti, A survey of software-defined networking: past, present, and future of programmable networks. IEEE Commun. Surv. Tutorial. 16(3) (2014)

    Google Scholar 

  13. D. Kreutz, F.M.V. Ramos, P.E. Verissimo, C.E. Rothenberg, S. Azodolmolky, S. Uhlig, Software-defined networking: a comprehensive survey. Network. Int. Architect. 103(1), 14–76 (2014)

    Google Scholar 

  14. H. Farhady, H. Lee, A. Nakao, Software-defined networking: a survey. Comput. Netw. 81, 79–95 (2015)

    Article  Google Scholar 

  15. M. Mousa, A.M. Bahaa-Eldin, M. Sobh, Software defined networking concepts and challenges, in Proceedings of the 2016 11th International Conference on Computer Engineering & Systems (ICCES ‘16) (Cairo, Egypt, 2016), pp. 79–90

    Google Scholar 

  16. N. Feamster, J. Rexford, E. Zegura, The road to SDN: an intellectual history of programmable networks. Comput. Commun. Rev. 44(2), 87–98 (2014)

    Article  Google Scholar 

  17. A. Hakiri, A. Gokhale, P. Berthou, D.C. Schmidt, T. Gayraud, Software-defined networking: challenges and research opportunities for future internet. Comput. Network. 75, 453–471 (2014)

    Article  Google Scholar 

  18. S. Al-Sultan, M.M. Al-Doori, A.H. Al-Bayatti, H. Zedan, A comprehensive survey on vehicular Ad Hoc network. J. Netw. Comput. Appl. 37(1), 380–392 (2014)

    Article  Google Scholar 

  19. M. Ealias, R.N. Gaur, A survey on different routing models in cognitive radio ad-hoc network. Int. J. Adv. Res. Elect. Elect. Instrument. Eng. 03(12), 13741–13748 (2014)

    Google Scholar 

  20. W.B. Jaballah, M. Conti, C. Lal, A survey on software-defined VANETs: benefits, challenges, and future directions. arXiv preprint arXiv:1904.04577 (2019) – arxiv.org

  21. K.S. Kalupahana Liyanage, M. Ma, P.H.J. Chong, Link stability based optimized routing framework for software defined vehicular networks. IEEE Trans. Veh. Technol., 1–1 (2019)

    Google Scholar 

  22. S. Correia, A. Boukerche, R.I. Meneguette, An architecture for hierarchical software-defined vehicular networks. IEEE Commun. Mag. 55(7), 80–86 (2017)

    Article  Google Scholar 

  23. N.B. Truong, G.M. Lee, Y. Ghamri-Doudane, Software defined networking-based vehicular ad hoc network with fog computing, in 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM) (2015), pp. 1202–1207

    Google Scholar 

  24. Y. Tang, N. Cheng, W. Wu, M. Wang, Y. Dai, X. Shen, Delay minimization routing for heterogeneous vanets with machine learning based mobility prediction. IEEE Trans. Veh. Technol., 1–1 (2019)

    Google Scholar 

  25. A. Hussein, I. H. Elhajj, A. Chehab, and A. Kayssi, Sdn vanets in 5g: an architecture for resilient security services, in 2017 Fourth International Conference on Software Defined Systems (SDS) (2017), pp. 67–74

    Google Scholar 

  26. C.F. Lai, Y.C. Chang, H.C. Chao, M.S. Hossain, A. Ghoneim, A buffer-aware qos streaming approach for sdn-enabled 5g vehicular networks. IEEE Commun. Mag. 55(8), 68–73 (2017)

    Article  Google Scholar 

  27. X. Ge, Z. Li, S. Li, 5G software defined vehicular networks. IEEE Commun. Mag. 55(7), 87–93 (2017)

    Article  Google Scholar 

  28. A. Soua, S. Tohme, Multi-level sdn with vehicles as fog computing infrastructures: a new integrated architecture for 5g-vanets, in 2018 21st Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN) (2018), pp. 1–8

    Google Scholar 

  29. W. Qi, Q. Song, X. Wang, L. Guo, Z. Ning, Sdn-enabled social aware clustering in 5g-vanet systems. IEEE Access. 6, 28213–28224 (2018)

    Article  Google Scholar 

  30. G.S. Aujla, R. Chaudhary, N. Kumar, J.J.P.C. Rodrigues, A. Vinel, Data offloading in 5g-enabled software-defined vehicular networks: A stackelberg-game-based approach. IEEE Commun. Mag. 55(8), 100–108 (2017)

    Article  Google Scholar 

  31. C. Huang, M. Chiang, D. Dao, W. Su, S. Xu, H. Zhou, V2v data offloading for cellular network based on the software defined network (sdn) inside mobile edge computing (mec) architecture. IEEE Access 6, 17741–17755 (2018)

    Article  Google Scholar 

  32. Z. He, D. Zhang, J. Liang, Cost-efficient sensory data transmission in heterogeneous software-defined vehicular networks. IEEE Sensors J. 16(20), 7342–7354 (2016)

    Article  Google Scholar 

  33. A. Di Maio, M.R. Palattella, R. Soua, L. Lamorte, X. Vilajosana, J. Alonso-Zarate, T. Engel, Enabling sdn in vanets: what is the impact on security? Sensors 16(12) (2016)

    Google Scholar 

  34. H. Khelifi, S. Luo, B. Nour, S.C. Shah, Security and privacy issues in vehicular named data networks: an overview. Mob. Inform. Syst. 2018, 1–11 (2018)

    Google Scholar 

  35. S. Tomovic, M. Radonjic, M. Pejanovic-Djurisic, I. Radusinovic, Software-defined wireless sensor networks: opportunities and challenges ETF Journal of Electrical Engineering, 21(1), 74–83 (2015), ISSN 0354-8653

    Google Scholar 

  36. S. Sezer, S. Scott-Hayward, P. Chouhan, et al., Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Commun. Mag. 51(7), 36–43 (2013)

    Article  Google Scholar 

  37. H. Kim, N. Feamster, Improving network management with software defined networking. IEEE Commun. Mag. 51(2), 114–119 (2013)

    Article  Google Scholar 

  38. D. Kreutz, F. Ramos, P. Verissimo, Towards secure and dependable software-defined networks, in Proceedings of the 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN ‘13) (Hong Kong, China, 2013), pp. 55–60

    Google Scholar 

  39. A. Tootoonchian, Y. Ganjali, HyperFlow: a distributed control plane for openflow, in Proceedings of the 2010 Internet Network Management Conference on Research on Enterprise Networking (2010), p. 3

    Google Scholar 

  40. A. Voellmy, J. Wang, Scalable software defined network controllers, in Proceedings of the ACM SIGCOMM 2012 Conference Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM ‘12) (August 2012), pp. 289–290

    Google Scholar 

  41. M. Saini, A. Alelaiwi, A.E.J.A.C.S. Saddik, How close are we to realizing a pragmatic VANET solution? A meta-survey. ACM Comput. Surv. 48(2), 1–40 (2015)

    Article  Google Scholar 

  42. H. Shafiq, R.A. Rehman, B.-S. Kim, Services and security threats in sdn based vanets: a survey. Wireless Commun. Mob. Comput. 2018 (2018)

    Google Scholar 

  43. S. Sulaiman, S. Askar, Investigation of the impact of DDoS attack on network efficiency of the University of Zakho. J. Univ. Zakho 3(A)(2), 275–280 (2015)

    Article  Google Scholar 

  44. N. Fares, S. Askar, A novel semi-symmetric encryption algorithm for internet applications. J. Univ. Duhok 19(1), 1–9 (2016)

    Google Scholar 

  45. M. Arif, G. Wang, O. Geman, V.E. Balas, P. Tao, A. Brezulianu, J.J.A.S. Chen, SDN-based VANETs, security attacks, applications, and challenges. Appl. Sci. 10(9), 3217 (2020)

    Article  Google Scholar 

  46. S. Muhuri, D. Das, S. Chakraborty, An automated game theoretic approach for cooperative road traffic management in disaster, in Proceedings of the IEEE International Symposium on Nanoelectronic Information System (iNIS), (December, 2017), pp. 145–150

    Google Scholar 

  47. S. Javaid, A. Su_an, S. Pervaiz, M. Tanveer, Smart traffic management system using Internet of Things, in Proceedings of the 20th International Conference on Advanced Communications Technology (ICACT) (February, 2018), pp. 393–398

    Google Scholar 

  48. S. Nakamoto, Bitcoin: a peer-to-peer electronic cash system. Manubot (2019, November). [Online]. Available: https://www.bitcoin.org

  49. E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan, Hyperledger fabric: a distributed operating system for permissioned blockchains, in Proceedings of the 13th EuroSys Conference (2018, April), pp 1–15

    Google Scholar 

  50. L. Xie, Y. Ding, H. Yang, X. Wang, Blockchain-based secure and trustworthy internet of things in SDN-enabled 5G-VANETs. IEEE Access 7, 56656–56666 (2019)

    Article  Google Scholar 

  51. B. Nour, A. Ksentini, N. Herbaut, P.A. Frangoudis, H. Moungla, A blockchain-based network slice broker for 5G services. IEEE Netw. Lett. 1(3), 99–102 (2019)

    Article  Google Scholar 

  52. C. Qiu, F.R. Yu, H. Yao, C. Jiang, F. Xu, C. Zhao, Blockchain-based software-de_ned industrial internet of things: a dueling deep Q-learning approach. IEEE Int. Things J. 6(3), 4627–4639 (2019)

    Article  Google Scholar 

  53. M.A. Khan, K. Salah, IoT security: review, blockchain solutions, and open challenges. Future Gener. Comput. Syst. 82, 395–411 (2018)

    Article  Google Scholar 

  54. M. Conti, E. Sandeep Kumar, C. Lal, S. Ruj, A survey on security and privacy issues of bitcoin. IEEE Commun. Surv. Tuts. 20(4), 3416–3452 (2018)

    Article  Google Scholar 

  55. Z. Lu, W. Liu, Q. Wang, G. Qu, Z. Liu, A privacy-preserving trust model based on blockchain for VANETs. IEEE Access 6, 45655–45664 (2018)

    Article  Google Scholar 

  56. F. Tschorsch, B. Scheuermann, Bitcoin and beyond: a technical survey on decentralized digital currencies. IEEE Commun. Surveys Tuts. 18(3), 2084–2123 (2016)

    Article  Google Scholar 

  57. M. Belotti, N. Bozic, G. Pujolle, S. Secci, A vademecum on blockchain technologies: when, which, and how. IEEE Commun. Surveys Tuts. 21(4), 3796–3838 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghonge, M.M., N, P. (2022). Software-Defined Network-Based Vehicular Ad Hoc Networks: A Comprehensive Review. In: Ghonge, M.M., Pramanik, S., Potgantwar, A.D. (eds) Software Defined Networking for Ad Hoc Networks. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-91149-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91149-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91148-5

  • Online ISBN: 978-3-030-91149-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics