Skip to main content

Adaptive Maneuver Planning for Autonomous Vehicles Using Behavior Tree on Apollo Platform

  • Conference paper
  • First Online:
Artificial Intelligence XXXVIII (SGAI-AI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13101))

Abstract

In safety-critical systems such as autonomous driving systems, behavior planning is a significant challenge. The presence of numerous dynamic obstacles makes the driving environment unpredictable. The planning algorithm should be safe, reactive, and adaptable to environmental changes. The paper presents an adaptive maneuver planning algorithm based on an evolving behavior tree created with genetic programming. In addition, we make a technical contribution to the Baidu Apollo autonomous driving platform, allowing the platform to test and develop overtaking maneuver planning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baidu Apollo team: Apollo: Open Source Autonomous Driving, howpublished. https://github.com/apolloauto/apollo, note = Accessed 11 Feb 2019

  2. Brechtel, S., Gindele, T., Dillmann, R.: Probabilistic mdp-behavior planning for cars. In: 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 1537–1542. IEEE (2011)

    Google Scholar 

  3. Brechtel, S., Gindele, T., Dillmann, R.: Probabilistic decision-making under uncertainty for autonomous driving using continuous pomdps. In: 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 392–399 (2014). https://doi.org/10.1109/ITSC.2014.6957722

  4. Fu, Y., Qin, L., Yin, Q.: A reinforcement learning behavior tree framework for game AI. In: 2016 International Conference on Economics, Social Science, Arts, Education and Management Engineering, pp. 573–579. Atlantis Press (2016)

    Google Scholar 

  5. Iovino, M., Styrud, J., Falco, P., Smith, C.: Learning behavior trees with genetic programming in unpredictable environments. arXiv preprint arXiv:2011.03252 (2020)

  6. Ivanov, D., Panov, A.I.: Application of reinforcement learning in open space planner for apollo auto. In: Kovalev, S., Tarassov, V., Snasel, V., Sukhanov, A. (eds.) IITI 2021. LNNS, vol. 330, pp. 35–43. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-87178-9_4

    Chapter  Google Scholar 

  7. Kiselev, G., Panov, A.: Q-learning of spatial actions for hierarchical planner of cognitive agents. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2020. LNCS (LNAI), vol. 12336, pp. 160–169. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60337-3_16

    Chapter  Google Scholar 

  8. Martinson, M., Skrynnik, A., Panov, A.I.: Navigating autonomous vehicle at the road intersection simulator with reinforcement learning. In: Kuznetsov, S.O., Panov, A.I., Yakovlev, K.S. (eds.) RCAI 2020. LNCS (LNAI), vol. 12412, pp. 71–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59535-7_6

    Chapter  Google Scholar 

  9. Menéndez-Romero, C., Winkler, F., Dornhege, C., Burgard, W.: Maneuver planning for highly automated vehicles. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 1458–1464. IEEE (2017)

    Google Scholar 

  10. Mirchevska, B., Pek, C., Werling, M., Althoff, M., Boedecker, J.: High-level decision making for safe and reasonable autonomous lane changing using reinforcement learning. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 2156–2162. IEEE (2018)

    Google Scholar 

  11. Montemerlo, M., et al.: Junior: the stanford entry in the urban challenge. J. Field Robot. 25(9), 569–597 (2008)

    Article  Google Scholar 

  12. Osipov, G.S., Panov, A.I.: Rational behaviour planning of cognitive semiotic agent in dynamic environment. Sci. Tech. Inf. Process. 48(6) (2021, In press)

    Google Scholar 

  13. Panov, A.I.: Goal setting and behavior planning for cognitive agents. Sci. Tech. Inf. Process. 46(6), 404–415 (2019). https://doi.org/10.3103/S0147688219060066

    Article  Google Scholar 

  14. Pereira, R.d.P., Engel, P.M.: A framework for constrained and adaptive behavior-based agents. arXiv preprint arXiv:1506.02312 (2015)

  15. Qiao, Z., Muelling, K., Dolan, J., Palanisamy, P., Mudalige, P.: Pomdp and hierarchical options MDP with continuous actions for autonomous driving at intersections. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 2377–2382. IEEE (2018)

    Google Scholar 

  16. Rezaee, K., Yadmellat, P., Nosrati, M.S., Abolfathi, E.A., Elmahgiubi, M., Luo, J.: Multi-lane cruising using hierarchical planning and reinforcement learning. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 1800–1806. IEEE (2019)

    Google Scholar 

  17. Ulbrich, S., Maurer, M.: Probabilistic online pomdp decision making for lane changes in fully automated driving. In: 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), pp. 2063–2067. IEEE (2013)

    Google Scholar 

  18. Ulbrich, S., Maurer, M.: Probabilistic online pomdp decision making for lane changes in fully automated driving. In: 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), pp. 2063–2067 (2013). https://doi.org/10.1109/ITSC.2013.6728533

  19. Urmson, C., et al.: Autonomous driving in urban environments: boss and the urban challenge. J. Field Robot. 25(8), 425–466 (2008)

    Article  Google Scholar 

  20. Zhang, Q., Yao, J., Yin, Q., Zha, Y.: Learning behavior trees for autonomous agents with hybrid constraints evolution. Appl. Sci. 8(7), 1077 (2018)

    Article  Google Scholar 

  21. Zhang, Y., Sun, H., Zhou, J., Pan, J., Hu, J., Miao, J.: Optimal vehicle path planning using quadratic optimization for baidu apollo open platform. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 978–984 (2020). https://doi.org/10.1109/IV47402.2020.9304787

  22. Ziegler, J., et al.: Making bertha drive–an autonomous journey on a historic route. IEEE Intell. Transp. Syst. Mag. 6(2), 8–20 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The reported study was supported by RFBR, research Project No. 18-29-22027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mais Jamal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jamal, M., Panov, A. (2021). Adaptive Maneuver Planning for Autonomous Vehicles Using Behavior Tree on Apollo Platform. In: Bramer, M., Ellis, R. (eds) Artificial Intelligence XXXVIII. SGAI-AI 2021. Lecture Notes in Computer Science(), vol 13101. Springer, Cham. https://doi.org/10.1007/978-3-030-91100-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91100-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91099-0

  • Online ISBN: 978-3-030-91100-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics