Skip to main content

Computer Aided Formal Design of Swarm Robotics Algorithms

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2021)

Abstract

Previous works on formally studying mobile robotic swarms consider necessary and sufficient system hypotheses enabling to solve theoretical benchmark problems (geometric pattern formation, gathering, scattering, etc.). We argue that formal methods can also help in the early design stage of mobile robotic swarms correct-by-design protocols, even for tasks closer to real-world use cases and not previously studied theoretically. Our position is supported by a concrete case study. Starting from a real-world case scenario, we jointly design the formal problem specification, a family of protocols that are able to solve the problem, and their corresponding proof of correctness, all expressed with the same formal framework. The concrete framework we use for our development is the Pactole library based on the Coq proof assistant.

This work was partially supported by Project SAPPORO of the French National Research Agency (ANR) under the reference 2019-CE25-0005-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Yamashita received the “Prize for Innovation in Distributed Computing” for his seminal work on this model.

References

  1. Altisen, K., Corbineau, P., Devismes, S.: A framework for certified self-stabilization. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp. 36–51. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8_3

    Chapter  MATH  Google Scholar 

  2. Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossibility results for Byzantine-tolerant mobile robots. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 178–190. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03089-0_13

    Chapter  Google Scholar 

  3. Balabonski, T., Courtieu, P., Pelle, R., Rieg, L., Tixeuil, S., Urbain, X.: Continuous vs. discrete asynchronous moves: a certified approach for mobile robots. In: Atig, M.F., Schwarzmann, A.A. (eds.) NETYS 2019. LNCS, vol. 11704, pp. 93–109. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31277-0_7

    Chapter  Google Scholar 

  4. Balabonski, T., Courtieu, P., Pelle, R., Rieg, L., Tixeuil, S., Urbain, X.: Computer aided formal design of swarm robotics algorithms. CoRR abs/2101.06966 (2021). https://arxiv.org/abs/2101.06966

  5. Balabonski, T., Delga, A., Rieg, L., Tixeuil, S., Urbain, X.: Synchronous gathering without multiplicity detection: a certified algorithm. Theory Comput. Syst. 63(2), 200–218 (2017). https://doi.org/10.1007/s00224-017-9828-z

    Article  MathSciNet  MATH  Google Scholar 

  6. Balabonski, T., Pelle, R., Rieg, L., Tixeuil, S.: A foundational framework for certified impossibility results with mobile robots on graphs. In: Bellavista, P., Garg, V.K. (eds.) Proceedings of the 19th International Conference on Distributed Computing and Networking, ICDCN 2018, Varanasi, India, 4–7 January 2018, pp. 5:1–5:10. ACM (2018). https://doi.org/10.1145/3154273.3154321

  7. Bérard, B., Lafourcade, P., Millet, L., Potop-Butucaru, M., Thierry-Mieg, Y., Tixeuil, S.: Formal verification of mobile robot protocols. Distrib. Comput. 29(6), 459–487 (2016). https://doi.org/10.1007/s00446-016-0271-1

    Article  MathSciNet  MATH  Google Scholar 

  8. Bezem, M., Bol, R., Groote, J.F.: Formalizing process algebraic verifications in the calculus of constructions. Formal Aspects Comput. 9, 1–48 (1997)

    Article  Google Scholar 

  9. Bonnet, F., Défago, X., Petit, F., Potop-Butucaru, M., Tixeuil, S.: Discovering and assessing fine-grained metrics in robot networks protocols. In: 33rd IEEE International Symposium on Reliable Distributed Systems Workshops, SRDS Workshops 2014, Nara, Japan, 6–9 October 2014, pp. 50–59. IEEE (2014). https://doi.org/10.1109/SRDSW.2014.34

  10. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a certification. Inf. Process. Lett. 115, 447–452 (2015). https://doi.org/10.1016/j.ipl.2014.11.001

    Article  MathSciNet  MATH  Google Scholar 

  11. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Certified universal gathering in \(\mathbb{R}^2\) for oblivious mobile robots. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 187–200. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53426-7_14

    Chapter  Google Scholar 

  12. Cousineau, D., Doligez, D., Lamport, L., Merz, S., Ricketts, D., Vanzetto, H.: TLA\(^{+}\) Proofs. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 147–154. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9_14

    Chapter  Google Scholar 

  13. Défago, X., Heriban, A., Tixeuil, S., Wada, K.: Using model checking to formally verify rendezvous algorithms for robots with lights in Euclidean space. In: International Symposium on Reliable Distributed Systems, SRDS 2020, Shanghai, China, 21–24 September 2020, pp. 113–122. IEEE (2020). https://doi.org/10.1109/SRDS51746.2020.00019

  14. Deng, Y., Monin, J.F.: Verifying self-stabilizing population protocols with coq. In: Chin, W.N., Qin, S. (eds.) Third IEEE International Symposium on Theoretical Aspects of Software Engineering (TASE 2009), Tianjin, China, pp. 201–208. IEEE Computer Society, July 2009

    Google Scholar 

  15. Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal grid exploration by asynchronous oblivious robots. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp. 64–76. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33536-5_7

    Chapter  Google Scholar 

  16. Doan, H.T.T., Bonnet, F., Ogata, K.: Model checking of a mobile robots perpetual exploration algorithm. In: Liu, S., Duan, Z., Tian, C., Nagoya, F. (eds.) SOFL+MSVL 2016. LNCS, vol. 10189, pp. 201–219. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57708-1_12

    Chapter  Google Scholar 

  17. Doan, H.T.T., Bonnet, F., Ogata, K.: Model checking of robot gathering. In: Aspnes, J., Bessani, A., Felber, P., Leitão, J. (eds.) 21st International Conference on Principles of Distributed Systems, OPODIS 2017, Lisbon, Portugal, 18–20 December 2017. LIPIcs, vol. 95, pp. 12:1–12:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.OPODIS.2017.12

  18. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337(1–3), 147–168 (2005). https://doi.org/10.1016/j.tcs.2005.01.001

    Article  MathSciNet  MATH  Google Scholar 

  19. Fokkink, W.: Modelling Distributed Systems. EATCS Texts in Theoretical Computer Science, Springer, Heidelberg (2007)

    Google Scholar 

  20. Gaspar, N., Henrio, L., Madelaine, E.: Bringing coq into the world of GCM distributed applications, pp. 643–662 (2014)

    Google Scholar 

  21. Küfner, P., Nestmann, U., Rickmann, C.: Formal verification of distributed algorithms. In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp. 209–224. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33475-7_15

    Chapter  Google Scholar 

  22. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16(3), 872–923 (1994). https://doi.org/10.1145/177492.177726

    Article  Google Scholar 

  23. Millet, L., Potop-Butucaru, M., Sznajder, N., Tixeuil, S.: On the synthesis of mobile robots algorithms: the case of ring gathering. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 237–251. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11764-5_17

    Chapter  Google Scholar 

  24. Sangnier, A., Sznajder, N., Potop-Butucaru, M., Tixeuil, S.: Parameterized verification of algorithms for oblivious robots on a ring. Formal Methods Syst. Des. (6), 55–89 (2019). https://doi.org/10.1007/s10703-019-00335-y

  25. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Tixeuil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balabonski, T., Courtieu, P., Pelle, R., Rieg, L., Tixeuil, S., Urbain, X. (2021). Computer Aided Formal Design of Swarm Robotics Algorithms. In: Johnen, C., Schiller, E.M., Schmid, S. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2021. Lecture Notes in Computer Science(), vol 13046. Springer, Cham. https://doi.org/10.1007/978-3-030-91081-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91081-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91080-8

  • Online ISBN: 978-3-030-91081-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics