Abadeh, S., Esfahani, P., Kuhn, D.: Distributionally robust logistic regression. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 1576–1584 (2015)
Google Scholar
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning (ICML), vol. 70, no. 1, pp. 214–223 (2017)
Google Scholar
Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods, vol. 23. Prentice Hall Englewood Cliffs (1989)
Google Scholar
Beznosikov, A., Dvurechensky, P., Koloskova, A., Samokhin, V., Stich, S.U., Gasnikov, A.: Decentralized local stochastic extra-gradient for variational inequalities. arXiv preprint arXiv:2106.08315 (2021)
Beznosikov, A., Samokhin, V., Gasnikov, A.: Local SGD for saddle-point problems. arXiv preprint arXiv:2010.13112 (2020)
Beznosikov, A., Scutari, G., Rogozin, A., Gasnikov, A.: Distributed saddle-point problems under similarity. arXiv preprint arXiv:2107.10706 (2021)
Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE Trans. Inf. Theory 52(6), 2508–2530 (2006)
Google Scholar
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)
Google Scholar
Facchinei, F., Pang, J.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research and Financial Engineering, Springer, New York (2007). https://books.google.ru/books?id=lX_7Rce3_Q0C. https://doi.org/10.1007/b97543
Goodfellow, I.J., et al.: Generative adversarial networks (2014)
Google Scholar
Jin, Y., Sidford, A.: Efficiently solving MDPs with stochastic mirror descent. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 4890–4900. PMLR, 13–18 July 2020
Google Scholar
Juditsky, A., Nemirovskii, A.S., Tauvel, C.: Solving variational inequalities with Stochastic Mirror-Prox algorithm (2008)
Google Scholar
Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings, pp. 482–491. IEEE (2003)
Google Scholar
Koloskova, A., Loizou, N., Boreiri, S., Jaggi, M., Stich, S.U.: A unified theory of decentralized SGD with changing topology and local updates. arXiv preprint arXiv:2003.10422 (2020)
Kovalev, D., Gasanov, E., Richtárik, P., Gasnikov, A.: Lower bounds and optimal algorithms for smooth and strongly convex decentralized optimization over time-varying networks. arXiv preprint arXiv:2106.04469 (2021)
Kovalev, D., Shulgin, E., Richtárik, P., Rogozin, A., Gasnikov, A.: ADOM: accelerated decentralized optimization method for time-varying networks. arXiv preprint arXiv:2102.09234 (2021)
Li, H., Lin, Z.: Accelerated gradient tracking over time-varying graphs for decentralized optimization. arXiv preprint arXiv:2104.02596 (2021)
Liu, M., et al.: A decentralized parallel algorithm for training generative adversarial nets. arXiv preprint arXiv:1910.12999 (2019)
Liu, W., Mokhtari, A., Ozdaglar, A., Pattathil, S., Shen, Z., Zheng, N.: A decentralized proximal point-type method for saddle point problems. arXiv preprint arXiv:1910.14380 (2019)
Maros, M., Jaldén, J.: PANDA: a dual linearly converging method for distributed optimization over time-varying undirected graphs. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 6520–6525 (2018)
Google Scholar
McDonald, R., Hall, K., Mann, G.: Distributed training strategies for the structured perceptron. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 456–464 (2010)
Google Scholar
McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)
Google Scholar
Nedić, A., Olshevsky, A., Shi, W.: Achieving geometric convergence for distributed optimization over time-varying graphs. SIAM J. Optim. 27(4), 2597–2633 (2017)
Google Scholar
Nedic, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization. IEEE Trans. Autom. Control 54(1), 48–61 (2009)
Google Scholar
Nemirovski, A.: Prox-method with rate of convergence o(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Optim. 15, 229–251 (2004). https://doi.org/10.1137/S1052623403425629
von Neumann, J., Morgenstern, O., Kuhn, H.: Theory of Games and Economic Behavior (Commemorative Edition). Princeton University Press (2007)
Google Scholar
Rogozin, A., Beznosikov, A., Dvinskikh, D., Kovalev, D., Dvurechensky, P., Gasnikov, A.: Decentralized distributed optimization for saddle point problems. arXiv preprint arXiv:2102.07758 (2021)
Rogozin, A., Gasnikov, A.: Projected gradient method for decentralized optimization over time-varying networks. arXiv preprint arXiv:1911.08527 (2019)
Rogozin, A., Uribe, C.A., Gasnikov, A.V., Malkovsky, N., Nedić, A.: Optimal distributed convex optimization on slowly time-varying graphs. IEEE Trans. Control Network Syst. 7(2), 829–841 (2019)
Google Scholar
Scaman, K., Bach, F., Bubeck, S., Lee, Y.T., Massoulié, L.: Optimal algorithms for smooth and strongly convex distributed optimization in networks. arXiv preprint arXiv:1702.08704 (2017)
Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press (2014)
Google Scholar
Ye, H., Luo, L., Zhou, Z., Zhang, T.: Multi-consensus decentralized accelerated gradient descent. arXiv preprint arXiv:2005.00797 (2020)