Skip to main content

Distortion of the Microbiota of the Natural Environment by Human Activities

  • Chapter
  • First Online:
Evolution, Biodiversity and a Reassessment of the Hygiene Hypothesis

Part of the book series: Progress in Inflammation Research ((PIR,volume 89))

  • 604 Accesses

Abstract

Natural environmental microbiota is extremely abundant and diverse in environments traditionally occupied by humans. Humans, like other animals, cause shifts in the microbiota in their living environment. The exceptional scale and longevity of these shifts pose a risk to natural and seminatural ecosystems and human health. Environmental pollution, non-native invasive plant species, and vegetation control by humans distort seasonal fluctuation and directly alter natural microbiota. They also reduce the accessibility of natural environmental microbiota in urbanized societies. The removal of organic surface soil and its substitution with man-made surfaces is the most extreme example of the distortion of natural microbiota; it cuts the number of microbial cells per gram soil to one thousandth or one hundred thousandth of the original level. Since humans evolved in continuous contact with environmental microbiota, efforts to rewild urban microbiota are being developed to reintroduce diverse contacts with microbiota of the natural environment to everyday life of urban dwellers. Recent findings suggest that these efforts may lead to enhanced immune modulation. Further research is needed to understand whether this eventually results in a lower incidence of immune-mediated diseases in urbanized societies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome. 2015;3:31. https://doi.org/10.1186/s40168-015-0094-5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liang X, Wagner RE, Zhuang J, DeBruyn JM, Wilhelm SW, Liu F, et al. Viral abundance and diversity vary with depth in a southeastern United States agricultural ultisol. Soil Biol Biochem. 2019;137:107546. https://doi.org/10.1016/j.soilbio.2019.107546.

    Article  CAS  Google Scholar 

  3. Puhakka R, Rantala O, Roslund MI, Rajaniemi J, Laitinen OH, Sinkkonen A, et al. Greening of daycare yards with biodiverse materials affords well-being, play and environmental relationships. Int J Environ Res Public Health. 2019;16(16):2948. https://doi.org/10.3390/ijerph16162948.

    Article  PubMed Central  Google Scholar 

  4. Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesundera R, et al. Fungal biogeography. Global diversity and geography of soil fungi. Science. 2014;346(6213):1256688. https://doi.org/10.1126/science.1256688.

    Article  CAS  PubMed  Google Scholar 

  5. Tecon R, Or D. Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol Rev. 2017;41(5):599–623. https://doi.org/10.1093/femsre/fux039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551(7681):457–63. https://doi.org/10.1038/nature24621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science. 2020;367(6480):eaba1223. https://doi.org/10.1126/science.aba1223.

    Article  CAS  PubMed  Google Scholar 

  8. DeLeo PC, Baveye P, Ghiorse WC. Use of confocal laser scanning microscopy on soil thin-sections for improved characterization of microbial growth in unconsolidated soils and aquifer materials. J Microbiol Methods. 1997;30(3):193–203. https://doi.org/10.1016/S0167-7012(97)00065-1.

    Article  Google Scholar 

  9. Hillebrand H. On the generality of the latitudinal diversity gradient. Am Nat. 2004;163(2):192–211. https://doi.org/10.1086/381004.

    Article  PubMed  Google Scholar 

  10. Upton RN, Checinska Sielaff A, Hofmockel KS, Xu X, Polley HW, Wilsey BJ. Soil depth and grassland origin cooperatively shape microbial community co-occurrence and function. Ecosphere. 2020;11(1):e02973. https://doi.org/10.1002/ecs2.2973.

    Article  Google Scholar 

  11. Spain AM, Krumholz LR, Elshahed MS. Abundance, composition, diversity and novelty of soil Proteobacteria. ISME J. 2009;3(8):992–1000. https://doi.org/10.1038/ismej.2009.43.

    Article  CAS  PubMed  Google Scholar 

  12. Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol. 2006;72(3):1719–28. https://doi.org/10.1128/AEM.72.3.1719-1728.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Laforest-Lapointe I, Paquette A, Messier C, Kembel SW. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature. 2017;546(7656):145–7. https://doi.org/10.1038/nature22399.

    Article  CAS  PubMed  Google Scholar 

  14. Cordier T, Robin C, Capdevielle X, Desprez-Loustau M-L, Vacher C. Spatial variability of phyllosphere fungal assemblages: genetic distance predominates over geographic distance in a European beech stand (Fagus sylvatica). Fungal Ecol. 2012;5(5):509–20. https://doi.org/10.1016/j.funeco.2011.12.004.

    Article  Google Scholar 

  15. Darlison J, Mogren L, Rosberg AK, Gruden M, Minet A, Line C, et al. Leaf mineral content govern microbial community structure in the phyllosphere of spinach (Spinacia oleracea) and rocket (Diplotaxis tenuifolia). Sci Total Environ. 2019;675:501–12. https://doi.org/10.1016/j.scitotenv.2019.04.254.

    Article  CAS  PubMed  Google Scholar 

  16. Siebert J, Sunnemann M, Auge H, Berger S, Cesarz S, Ciobanu M, et al. The effects of drought and nutrient addition on soil organisms vary across taxonomic groups, but are constant across seasons. Sci Rep. 2019;9(1):639. https://doi.org/10.1038/s41598-018-36777-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Manzoni S, Katul G. Invariant soil water potential at zero microbial respiration explained by hydrological discontinuity in dry soils. Geophys Res Lett. 2014;41(20):7151–8. https://doi.org/10.1002/2014GL061467.

    Article  Google Scholar 

  18. Taketani RG, Lanconi MD, Kavamura VN, Durrer A, Andreote FD, Melo IS. Dry season constrains bacterial phylogenetic diversity in a semi-arid rhizosphere system. Microb Ecol. 2017;73(1):153–61. https://doi.org/10.1007/s00248-016-0835-4.

    Article  PubMed  Google Scholar 

  19. Hamilton WD, Brown SP. Autumn tree colours as a handicap signal. Proc R Soc Lond Ser B Biol Sci. 2001;268(1475):1489–93. https://doi.org/10.1098/rspb.2001.1672.

    Article  CAS  Google Scholar 

  20. Sinkkonen A. Sexual reproduction advances autumn leaf colours in mountain birch (Betula pubescens ssp. czerepanovii). J Evol Biol. 2006;19(5):1722–4. https://doi.org/10.1111/j.1420-9101.2005.00991.x.

    Article  CAS  PubMed  Google Scholar 

  21. Lev-Yadun S, Yamazaki K, Holopainen JK, Sinkkonen A. Spring versus autumn leaf colours: evidence for different selective agents and evolution in various species and floras. Flora: Morphol Distrib Funct Ecol Plants. 2012;207(1):80–5. https://doi.org/10.1016/j.flora.2011.10.007.

    Article  Google Scholar 

  22. Mikola J, Silfver T, Paaso U, Possen BJMH, Rousi M. Leaf N resorption efficiency and litter N mineralization rate have a genotypic tradeoff in a silver birch population. Ecology. 2018;99(5):1227–35. https://doi.org/10.1002/ecy.2176.

    Article  PubMed  Google Scholar 

  23. Nurminen N, Cerrone D, Lehtonen J, Parajuli A, Roslund M, Lonnrot M, et al. Land cover of early life environment modulates the risk of type 1 diabetes. Diabetes Care. 2021;44:1506. https://doi.org/10.2337/dc20-1719.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kaiser C, Franklin O, Richter A, Dieckmann U. Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils. Nat Commun. 2015;6(1):8960. https://doi.org/10.1038/ncomms9960.

    Article  CAS  PubMed  Google Scholar 

  25. Coyte KZ, Tabuteau H, Gaffney EA, Foster KR, Durham WM. Microbial competition in porous environments can select against rapid biofilm growth. Proc Natl Acad Sci. 2017;114(2):E161–E70. https://doi.org/10.1073/pnas.1525228113.

    Article  CAS  PubMed  Google Scholar 

  26. Lehmann J, Hansel CM, Kaiser C, Kleber M, Maher K, Manzoni S, et al. Persistence of soil organic carbon caused by functional complexity. Nat Geosci. 2020;13(8):529–34. https://doi.org/10.1038/s41561-020-0612-3.

    Article  CAS  Google Scholar 

  27. Byrd AL, Segre JA. Infectious disease. Adapting Koch’s postulates. Science. 2016;351(6270):224–6. https://doi.org/10.1126/science.aad6753.

    Article  CAS  PubMed  Google Scholar 

  28. Haahtela T, Alenius H, Lehtimaki J, Sinkkonen A, Fyhrquist N, Hyoty H, et al. Immunological resilience and biodiversity for prevention of allergic diseases and asthma. Allergy. 2021;76:3613. https://doi.org/10.1111/all.14895.

    Article  CAS  PubMed  Google Scholar 

  29. Tedersoo L, Bahram M, Cajthaml T, Polme S, Hiiesalu I, Anslan S, et al. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME J. 2016;10(2):346–62. https://doi.org/10.1038/ismej.2015.116.

    Article  CAS  PubMed  Google Scholar 

  30. Lucas J, Bill B, Stevenson B, Kaspari M. The microbiome of the ant-built home: the microbial communities of a tropical arboreal ant and its nest. Ecosphere. 2017;8(2):e01639. https://doi.org/10.1002/ecs2.1639.

    Article  Google Scholar 

  31. Berman TS, Laviad-Shitrit S, Lalzar M, Halpern M, Inbar M. Cascading effects on bacterial communities: cattle grazing causes a shift in the microbiome of a herbivorous caterpillar. ISME J. 2018;12(8):1952–63. https://doi.org/10.1038/s41396-018-0102-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guimaraes HIP, Santana RH, Silveira R, Pinto OHB, Quirino BF, Barreto CC, et al. Seasonal variations in soil microbiota profile of termite (Syntermes wheeleri) mounds in the Brazilian Tropical savanna. Microorganisms. 2020;8(10):1482. https://doi.org/10.3390/microorganisms8101482.

    Article  CAS  PubMed Central  Google Scholar 

  33. Darwin C. On the origin of species by means of natural selection (1967 facsimile reproduction of 1st edn.). New York, NY: Atheneum; 1859.

    Google Scholar 

  34. Fridley JD, Sax DF. The imbalance of nature: revisiting a Darwinian framework for invasion biology. Glob Ecol Biogeogr. 2014;23(11):1157–66. https://doi.org/10.1111/geb.12221.

    Article  Google Scholar 

  35. Early R, Bradley BA, Dukes JS, Lawler JJ, Olden JD, Blumenthal DM, et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat Commun. 2016;7:12485. https://doi.org/10.1038/ncomms12485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Laongpol C, Suzuki K, Sridith K. Floristic composition of the terrestrial coastal vegetation in Narathiwat, Peninsular Thailand. Thai For Bull (Bot). 2005;0(33):44–70.

    Google Scholar 

  37. Laongpol C, Suzuki K, Katzensteiner K, Sridith K. Plant community structure of the coastal vegetation of peninsular Thailand. Thai For Bull (Bot). 2009;(37):106.

    Google Scholar 

  38. Maneenoon K, Sirirugsa P, Sridith K. Ethnobotany of Dioscorea L. (Dioscoreaceae), a major food plant of the Sakai tribe at Banthad Range, Peninsular Thailand. Ethnobot Res Appl. 2008;6:385. https://doi.org/10.17348/era.6.0.385-394.

    Article  Google Scholar 

  39. Catford JA, Jansson R, Nilsson C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib. 2009;15(1):22–40. https://doi.org/10.1111/j.1472-4642.2008.00521.x.

    Article  Google Scholar 

  40. Darji TB, Adhikari B, Pathak S, Neupane S, Thapa LB, Bhatt TD, et al. Phytotoxic effects of invasive Ageratina adenophora on two native subtropical shrubs in Nepal. Sci Rep. 2021;11(1):13663. https://doi.org/10.1038/s41598-021-92791-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Godoy O, Castro-Diez P, Van Logtestijn RS, Cornelissen JH, Valladares F. Leaf litter traits of invasive species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison. Oecologia. 2010;162(3):781–90. https://doi.org/10.1007/s00442-009-1512-9.

    Article  PubMed  Google Scholar 

  42. Thapa LB, Kaewchumnong K, Sinkkonen A, Sridith K. Plant invasiveness and target plant density: high densities of native Schima wallichii seedlings reduce negative effects of invasive Ageratina adenophora. Weed Res. 2017;57(2):72–80. https://doi.org/10.1111/wre.12238.

    Article  CAS  Google Scholar 

  43. Thapa L, Kaewchumnong K, Sinkkonen A, Sridith K. Plant communities and Ageratina adenophora invasion in lower montane vegetation, central Nepal. Int J Ecol Dev. 2016;31:35–49.

    Google Scholar 

  44. Thapa LB, Kaewchumnong K, Sinkkonen A, Sridith K. “Soaked in rainwater” effect of Ageratina adenophora on seedling growth and development of native tree species in Nepal. Flora. 2020;263:151554. https://doi.org/10.1016/j.flora.2020.151554.

    Article  Google Scholar 

  45. Weir BS, Turner SJ, Silvester WB, Park DC, Young JM. Unexpectedly diverse Mesorhizobium strains and Rhizobium leguminosarum nodulate native legume genera of New Zealand, while introduced legume weeds are nodulated by Bradyrhizobium species. Appl Environ Microbiol. 2004;70(10):5980–7. https://doi.org/10.1128/aem.70.10.5980-5987.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sinkkonen A, Laitinen OH, Leppiniemi J, Vauramo S, Hytönen VP, Setälä H. Positive association between biotin and the abundance of root-feeding nematodes. Soil Biol Biochem. 2014;73:93–5. https://doi.org/10.1016/j.soilbio.2014.02.002.

    Article  CAS  Google Scholar 

  47. Laitinen OH, Kuusela TP, Kukkurainen S, Nurminen A, Sinkkonen A, Hytonen VP. Bacterial avidins are a widely distributed protein family in Actinobacteria, Proteobacteria and Bacteroidetes. BMC Ecol Evol. 2021;21(1):53. https://doi.org/10.1186/s12862-021-01784-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. NOBANIS. Invasive alien species fact sheet – Lupinus polyphyllus. Online Database of the European Network on Invasive Alien Species – NOBANIS. 2010. www.nobanis.org. https://www.nobanis.org/globalassets/speciesinfo/l/lupinus-polyphyllus/lupinus-polyphyllus.pdf. Accessed 18 Jul 2021.

  49. Vetter VMS, Tjaden NB, Jaeschke A, Buhk C, Wahl V, Wasowicz P, et al. Invasion of a legume ecosystem engineer in a cold biome alters plant biodiversity. Front Plant Sci. 2018;9:715. https://doi.org/10.3389/fpls.2018.00715.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Oosterbeek M, Lozano-Torres JL, Bakker J, Goverse A. Sedentary plant-parasitic nematodes alter auxin homeostasis via multiple strategies. Front Plant Sci. 2021;12:668548. https://doi.org/10.3389/fpls.2021.668548.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ehrenfeld J. Effect of exotic plant invasion on soil nutrient cycling processes. Ecosystems. 2003;6:503–23. https://doi.org/10.1007/s10021-002-0151-3.

    Article  CAS  Google Scholar 

  52. Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun. 2015;6:6707. https://doi.org/10.1038/ncomms7707.

    Article  CAS  PubMed  Google Scholar 

  53. Laaksonen P, Sinkkonen A, Zaitsev G, Mäkinen E, Grönroos T, Romantschuk M. Treatment of municipal wastewater in full-scale on-site sand filter reduces BOD efficiently but does not reach requirements for nitrogen and phosphorus removal. Environ Sci Pollut Res. 2017;24(12):11446–58. https://doi.org/10.1007/s11356-017-8779-x.

    Article  CAS  Google Scholar 

  54. Plociniczak T, Sinkkonen A, Romantschuk M, Sulowicz S, Piotrowska-Seget Z. Rhizospheric bacterial strain Brevibacterium casei MH8a colonizes plant tissues and enhances Cd, Zn, Cu phytoextraction by white mustard. Front Plant Sci. 2016;7:101. https://doi.org/10.3389/fpls.2016.00101.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang Y, Li P, Jiang Z, Sinkkonen A, Wang S, Tu J, et al. Microbial community of high arsenic groundwater in agricultural irrigation area of hetao plain, Inner Mongolia. Front Microbiol. 2016;7:1917. https://doi.org/10.3389/fmicb.2016.01917.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sinkkonen A, Kauppi S, Pukkila V, Nan H, Płociniczak T, Kontro M, et al. Previous exposure advances the degradation of an anthropogenic s-triazine regardless of soil origin. J Soils Sediments. 2013;13(8):1430–8. https://doi.org/10.1007/s11368-013-0742-y.

    Article  CAS  Google Scholar 

  57. Sinkkonen A, Ollila S, Romantschuk M. Changes in TcpA gene frequency explain 2,4,6-trichlorophenol degradation in mesocosms. J Environ Sci Health B. 2014;49(10):756–9. https://doi.org/10.1080/03601234.2014.929865.

    Article  CAS  PubMed  Google Scholar 

  58. Sun Y, Romantschuk M, Bang-Andreasen T, Rantalainen A-L, Sinkkonen A. Nitrogen fertilizers stimulate desorption and biodegradation of gasoline aromatics in the soil from high Arctic permafrost active layer: a laboratory study. Int Biodeterior Biodegradation. 2020;150:104957. https://doi.org/10.1016/j.ibiod.2020.104957.

    Article  CAS  Google Scholar 

  59. Liu X, Selonen V, Steffen K, Surakka M, Rantalainen A-L, Romantschuk M, et al. Meat and bone meal as a novel biostimulation agent in hydrocarbon contaminated soils. Chemosphere. 2019;225:574–8. https://doi.org/10.1016/j.chemosphere.2019.03.053.

    Article  CAS  PubMed  Google Scholar 

  60. Mikkonen A, Ylaranta K, Tiirola M, Dutra LAL, Salmi P, Romantschuk M, et al. Successful aerobic bioremediation of groundwater contaminated with higher chlorinated phenols by indigenous degrader bacteria. Water Res. 2018;138:118–28. https://doi.org/10.1016/j.watres.2018.03.033.

    Article  CAS  PubMed  Google Scholar 

  61. Parajuli A, Grönroos M, Kauppi S, Płociniczak T, Roslund MI, Galitskaya P, et al. The abundance of health-associated bacteria is altered in PAH polluted soils-Implications for health in urban areas? PLoS One. 2017;12(11):e0187852. https://doi.org/10.1371/journal.pone.0187852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Roslund MI, Grönroos M, Rantalainen AL, Jumpponen A, Romantschuk M, Parajuli A, et al. Half-lives of PAHs and temporal microbiota changes in commonly used urban landscaping materials. PeerJ. 2018;6:e4508. https://doi.org/10.7717/peerj.4508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yan Z-Z, Chen Q-L, Zhang Y-J, He J-Z, Hu H-W. Industrial development as a key factor explaining variances in soil and grass phyllosphere microbiomes in urban green spaces. Environ Pollut. 2020;261:114201. https://doi.org/10.1016/j.envpol.2020.114201.

    Article  CAS  PubMed  Google Scholar 

  64. Sorbo S, Sinkkonen A, Aprile G, Strumia S, Cobianchi RC, Leone A, et al. Ultrastructural effects of trace elements and environmental pollution in Italian “Triangle of Death” on Pseudevernia furfuracea (L.) Zopf. Plant Biosyst. 2011;145:461–71.

    Article  Google Scholar 

  65. Hansi M, Weidenhamer JD, Sinkkonen A. Plant growth responses to inorganic environmental contaminants are density-dependent: experiments with copper sulfate, barley and lettuce. Environ Pollut. 2014;184:443–8. https://doi.org/10.1016/j.envpol.2013.09.027.

    Article  CAS  PubMed  Google Scholar 

  66. Belz RG, Patama M, Sinkkonen A. Low doses of six toxicants change plant size distribution in dense populations of Lactuca sativa. Sci Total Environ. 2018;631-632:510–23. https://doi.org/10.1016/j.scitotenv.2018.02.336.

    Article  CAS  PubMed  Google Scholar 

  67. Kauppi S, Romantschuk M, Strömmer R, Sinkkonen A. Natural attenuation is enhanced in previously contaminated and coniferous forest soils. Environ Sci Pollut Res. 2012;19(1):53–63. https://doi.org/10.1007/s11356-011-0528-y.

    Article  CAS  Google Scholar 

  68. Sinkkonen A, Kauppi S, Simpanen S, Rantalainen AL, Strommer R, Romantschuk M. Layer of organic pine forest soil on top of chlorophenol-contaminated mineral soil enhances contaminant degradation. Environ Sci Pollut Res Int. 2013;20(3):1737–45. https://doi.org/10.1007/s11356-012-1047-1.

    Article  CAS  PubMed  Google Scholar 

  69. Roslund MI, Rantala S, Oikarinen S, Puhakka R, Hui N, Parajuli A, et al. Endocrine disruption and commensal bacteria alteration associated with gaseous and soil PAH contamination among daycare children. Environ Int. 2019;130:104894. https://doi.org/10.1016/j.envint.2019.06.004.

    Article  CAS  PubMed  Google Scholar 

  70. Wang C, Xu CX, Krager SL, Bottum KM, Liao DF, Tischkau SA. Aryl hydrocarbon receptor deficiency enhances insulin sensitivity and reduces PPAR-α pathway activity in mice. Environ Health Perspect. 2011;119(12):1739–44. https://doi.org/10.1289/ehp.1103593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Borland MG, Krishnan P, Lee C, Albrecht PP, Shan W, Bility MT, et al. Modulation of aryl hydrocarbon receptor (AHR)-dependent signaling by peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in keratinocytes. Carcinogenesis. 2014;35(7):1602–12. https://doi.org/10.1093/carcin/bgu067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang Y, Dong S, Wang H, Tao S, Kiyama R. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. Environ Pollut. 2016;213:809–24. https://doi.org/10.1016/j.envpol.2016.03.050.

    Article  CAS  PubMed  Google Scholar 

  73. Vari HK, Roslund MI, Oikarinen S, Nurminen N, Puhakka R, Parajuli A, et al. Associations between land cover categories, gaseous PAH levels in ambient air and endocrine signaling predicted from gut bacterial metagenome of the elderly. Chemosphere. 2021;265:128965. https://doi.org/10.1016/j.chemosphere.2020.128965.

    Article  CAS  PubMed  Google Scholar 

  74. Zhao Q, Xiong W, Xing Y, Sun Y, Lin X, Dong Y. Long-term coffee monoculture alters soil chemical properties and microbial communities. Sci Rep. 2018;8(1):6116. https://doi.org/10.1038/s41598-018-24537-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kavamura VN, Mendes R, Bargaz A, Mauchline TH. Defining the wheat microbiome: towards microbiome-facilitated crop production. Comput Struct Biotechnol J. 2021;19:1200–13. https://doi.org/10.1016/j.csbj.2021.01.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stein MM, Hrusch CL, Gozdz J, Igartua C, Pivniouk V, Murray SE, et al. Innate immunity and asthma risk in amish and hutterite farm children. N Engl J Med. 2016;375(5):411–21. https://doi.org/10.1056/NEJMoa1508749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Parajuli A, Hui N, Puhakka R, Oikarinen S, Grönroos M, Selonen VAO, et al. Yard vegetation is associated with gut microbiota composition. Sci Total Environ. 2020;713:136707. https://doi.org/10.1016/j.scitotenv.2020.136707.

    Article  CAS  PubMed  Google Scholar 

  78. Roslund MI, Puhakka R, Grönroos M, Nurminen N, Oikarinen S, Gazali AM, et al. Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Sci Adv. 2020;6(42):eaba2578. https://doi.org/10.1126/sciadv.aba2578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sharma ML, Herne DE, Byrne JD, Kin PG. Nutrient discharge beneath urban lawns to a sandy coastal Aquifer, Perth, Western Australia. Hydrogeol J. 1996;4(1):103–17. https://doi.org/10.1007/s100400050100.

    Article  Google Scholar 

  80. Byrne L, Bruns M, Kim KC. Ecosystem properties of urban land covers at the aboveground–belowground interface. Ecosystems. 2008;11:1065–77. https://doi.org/10.1007/s10021-008-9179-3.

    Article  Google Scholar 

  81. Newbound M, McCarthy MA, Lebel T. Fungi and the urban environment: a review. Landsc Urban Plan. 2010;96(3):138–45. https://doi.org/10.1016/j.landurbplan.2010.04.005.

    Article  Google Scholar 

  82. Dorado-Morales P, Vilanova C, Pereto J, Codoner FM, Ramon D, Porcar M. A highly diverse, desert-like microbial biocenosis on solar panels in a Mediterranean city. Sci Rep. 2016;6:29235. https://doi.org/10.1038/srep29235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hui N, Grönroos M, Roslund MI, Parajuli A, Vari HK, Soininen L, et al. Diverse environmental microbiota as a tool to augment biodiversity in urban landscaping materials. Front Microbiol. 2019;10:536. https://doi.org/10.3389/fmicb.2019.00536.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gronroos M, Parajuli A, Laitinen OH, Roslund MI, Vari HK, Hyoty H, et al. Short-term direct contact with soil and plant materials leads to an immediate increase in diversity of skin microbiota. Microbiologyopen. 2019;8(3):e00645. https://doi.org/10.1002/mbo3.645.

    Article  CAS  PubMed  Google Scholar 

  85. Nurminen N, Lin J, Grönroos M, Puhakka R, Kramna L, Vari HK, et al. Nature-derived microbiota exposure as a novel immunomodulatory approach. Future Microbiol. 2018;13:737–44. https://doi.org/10.2217/fmb-2017-0286.

    Article  CAS  PubMed  Google Scholar 

  86. Selway CA, Mills JG, Weinstein P, Skelly C, Yadav S, Lowe A, et al. Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environ Int. 2020;145:106084. https://doi.org/10.1016/j.envint.2020.106084.

    Article  PubMed  Google Scholar 

  87. Korhonen A, Siitonen J, Kotze DJ, Immonen A, Hamberg L. Stand characteristics and dead wood in urban forests: potential biodiversity hotspots in managed boreal landscapes. Landsc Urban Plan. 2020;201:103855. https://doi.org/10.1016/j.landurbplan.2020.103855.

    Article  Google Scholar 

  88. Cadenasso M, Pickett STA. Urban principles for ecological landscape design and maintenance: scientific fundamentals. Cities Environ. 2008;1:4. https://doi.org/10.15365/cate.1242008.

    Article  Google Scholar 

  89. Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci U S A. 2012;109(21):8334–9. https://doi.org/10.1073/pnas.1205624109.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Parajuli A, Grönroos M, Siter N, Puhakka R, Vari HK, Roslund MI, et al. Urbanization reduces transfer of diverse environmental microbiota indoors. Front Microbiol. 2018;9:84. https://doi.org/10.3389/fmicb.2018.00084.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hui N, Parajuli A, Puhakka R, Gronroos M, Roslund MI, Vari HK, et al. Temporal variation in indoor transfer of dirt-associated environmental bacteria in agricultural and urban areas. Environ Int. 2019;132:105069. https://doi.org/10.1016/j.envint.2019.105069.

    Article  PubMed  Google Scholar 

  92. Leung MH, Wilkins D, Li EK, Kong FK, Lee PK. Indoor-air microbiome in an urban subway network: diversity and dynamics. Appl Environ Microbiol. 2014;80(21):6760–70. https://doi.org/10.1128/AEM.02244-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Salim SY, Kaplan GG, Madsen KL. Air pollution effects on the gut microbiota: a link between exposure and inflammatory disease. Gut Microbes. 2014;5(2):215–9. https://doi.org/10.4161/gmic.27251.

    Article  PubMed  Google Scholar 

  94. Kirjavainen PV, Karvonen AM, Adams RI, Taubel M, Roponen M, Tuoresmaki P, et al. Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat Med. 2019;25(7):1089–95. https://doi.org/10.1038/s41591-019-0469-4.

    Article  CAS  PubMed  Google Scholar 

  95. UNEP-WCMC. United Nations list of protected areas. Supplement on protected area management effectiveness. Cambridge: UNEP-WCMC; 2018. p. 2018.

    Google Scholar 

  96. Watkins H, Robinson JM, Breed MF, Parker B, Weinstein P. Microbiome-inspired green infrastructure: a toolkit for multidisciplinary landscape design. Trends Biotechnol. 2020;38(12):1305–8. https://doi.org/10.1016/j.tibtech.2020.04.009.

    Article  CAS  PubMed  Google Scholar 

  97. Ojala A, Korpela K, Tyrvainen L, Tiittanen P, Lanki T. Restorative effects of urban green environments and the role of urban-nature orientedness and noise sensitivity: a field experiment. Health Place. 2019;55:59–70. https://doi.org/10.1016/j.healthplace.2018.11.004.

    Article  PubMed  Google Scholar 

  98. Lehtimäki J, Sinkko H, Hielm-Björkman A, Laatikainen T, Ruokolainen L, Lohi H. Simultaneous allergic traits in dogs and their owners are associated with living environment, lifestyle and microbial exposures. Sci Rep. 2020;10(1):21954. https://doi.org/10.1038/s41598-020-79055-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Saarenpää M, Roslund MI, Puhakka R, Grönroos M, Parajuli A, Hui N, et al. Do rural second homes shape commensal microbiota of urban dwellers? A pilot study among urban elderly in Finland. Int J Environ Res Public Health. 2021;18(7):3742.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Prescott SL, Hancock T, Bland J, van den Bosch M, Jansson JK, Johnson CC, et al. Eighth Annual Conference of inVIVO Planetary Health: from challenges to opportunities. Int J Environ Res Public Health. 2019;16(21):4302.

    Article  PubMed Central  Google Scholar 

  101. Puhakka R, Valve R, Sinkkonen A. Older consumers’ perceptions of functional foods and non-edible health-enhancing innovations. Int J Consum Stud. 2018;42(1):111–9. https://doi.org/10.1111/ijcs.12400.

    Article  Google Scholar 

  102. Puhakka R, Haskins AH, Jauho M, Grönroos M, Sinkkonen A. Factors affecting young adults’ willingness to try novel health-enhancing nature-based products. J Int Consum Mark. 2021;33:595. https://doi.org/10.1080/08961530.2021.1873887.

    Article  Google Scholar 

  103. Puhakka R, Ollila S, Valve R, Sinkkonen A. Consumer trust in a health-enhancing innovation – comparisons between Finland, Germany, and the United Kingdom. J Int Consum Mark. 2019;31(2):162–76. https://doi.org/10.1080/08961530.2018.1498757.

    Article  Google Scholar 

  104. Dzhambov AM, Browning M, Markevych I, Hartig T, Lercher P. Analytical approaches to testing pathways linking greenspace to health: a scoping review of the empirical literature. Environ Res. 2020;186:109613. https://doi.org/10.1016/j.envres.2020.109613.

    Article  CAS  PubMed  Google Scholar 

  105. Parmes E, Pesce G, Sabel CE, Baldacci S, Bono R, Brescianini S, et al. Influence of residential land cover on childhood allergic and respiratory symptoms and diseases: evidence from 9 European cohorts. Environ Res. 2020;183:108953. https://doi.org/10.1016/j.envres.2019.108953.

    Article  CAS  PubMed  Google Scholar 

  106. Kasprzyk I, Ćwik A, Kluska K, Wójcik T, Cariñanos P. Allergenic pollen concentrations in the air of urban parks in relation to their vegetation. Urban For Urban Green. 2019;46:126486. https://doi.org/10.1016/j.ufug.2019.126486.

    Article  Google Scholar 

  107. Prescott SL, Larcombe DL, Logan AC, West C, Burks W, Caraballo L, et al. The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ J. 2017;10(1):29. https://doi.org/10.1186/s40413-017-0160-5.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhao Z, Wong JW. Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene. Environ Technol. 2009;30(3):291–9. https://doi.org/10.1080/09593330802630801.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Marja I. Roslund and the editors for constructive comments and Anna Luukkonen for formatting the references.

Compliance with Ethical Standards

International and local laws and the ethical standards of the publisher were always followed. When a study by the author’s research group recruited human volunteers, the ethical approval was obtained from the ethical committee of the local hospital district (Tampereen yliopistollisen sairaalan erityisvastuualueen alueellinen eettinen toimikunta, Pirkanmaa, Finland). All participants received oral and written information about the study, and they or the parents/guardians of the children provided a written informed consent that was in accordance with the Declaration of Helsinki.

Conflict of Interest Statement

The author has been named as an inventor in two patent applications submitted by the University of Helsinki (patent application number 20165932 “Immunomodulatory compositions” and patent application number 20175196 “Immunomodulatory gardening and landscaping material” at the Finnish Patent and Registration Office). The author has not received royalties from the patent applications. The author, jointly with University of Helsinki and other key investigators in the application number 20165932, is a founder and member of the board of Uute Scientific Ltd, which develops biodiversity-based interventions for the prevention of immune-mediated diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aki Sinkkonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinkkonen, A. (2022). Distortion of the Microbiota of the Natural Environment by Human Activities. In: Rook, G.A.W., Lowry, C.A. (eds) Evolution, Biodiversity and a Reassessment of the Hygiene Hypothesis. Progress in Inflammation Research, vol 89. Springer, Cham. https://doi.org/10.1007/978-3-030-91051-8_8

Download citation

Publish with us

Policies and ethics