Skip to main content

The Impacts of Microbiota on Animal Development and Physiology

  • Chapter
  • First Online:
Evolution, Biodiversity and a Reassessment of the Hygiene Hypothesis

Part of the book series: Progress in Inflammation Research ((PIR,volume 89))

Abstract

Animals evolved in a world dominated by microbes. While pathogenic microbes have long been appreciated as the cause of infectious diseases, only more recently have we understood that diseases can be caused by a lack of beneficial microbes. Microbial genomic sequencing can provide insights into the vast diversity of microbiomes associated with human health and disease, but experimental animal models are required to test hypotheses about the beneficial or detrimental effects of these microbes and their molecular products. Studies in gnotobiotic animal model systems reveal the aspects of animal biology shaped by our microbial associates and shed light on new possible mechanisms underlying human diseases. Here, we survey insights from the widely used animal model systems in microbiome research. We explore emerging shared themes across these diverse animal hosts about the interconnected impacts of microbiota on immune system maturation, intestinal epithelial homeostasis, nervous system development, endocrine signaling, and metabolic regulation. Research in animal models can provide both the basis for uncovering microbial influences on human health and disease, and also the starting point for developing treatment strategies to correct dysregulation of animal-microbe interactions in disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McFall-Ngai M, Hadfield M, Bosch T, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A. 2013;110(9):3229–36. https://doi.org/10.1073/PNAS.1218525110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Richter D, Levin T. The origin and evolution of cell-intrinsic antibacterial defenses in eukaryotes. Curr Opin Genet Dev. 2019;58-59:111–22. https://doi.org/10.1016/J.GDE.2019.09.002.

    Article  CAS  PubMed  Google Scholar 

  3. Wiles T, Guillemin K. Patterns of partnership: surveillance and mimicry in host-microbiota mutualisms. Curr Opin Microbiol. 2020;54:87–94. https://doi.org/10.1016/J.MIB.2020.01.012.

    Article  PubMed  Google Scholar 

  4. Falkow S. Molecular Koch’s postulates applied to microbial pathogenicity. Rev Infect Dis. 1988;10(Suppl):2. https://doi.org/10.1093/CID/10.supplement_2.S274.

    Article  Google Scholar 

  5. Strachan D. Hay fever, hygiene, and household size. Br Med J. 1989;299(6710):1259. https://doi.org/10.1136/BMJ.299.6710.1259.

    Article  CAS  Google Scholar 

  6. Blaser M, Falkow S. What are the consequences of the disappearing human microbiota? Nat Rev Microbiol. 2009;7(12):887–94. https://doi.org/10.1038/nrmicro2245.

    Article  CAS  PubMed  Google Scholar 

  7. Round J, Palm N. Causal effects of the microbiota on immune-mediated diseases. Sci Immunol. 2018;3(20):eaao1603. https://doi.org/10.1126/SCIIMMUNOL.AAO1603.

    Article  PubMed  Google Scholar 

  8. Vonaesch P, Anderson M, Sansonetti P. Pathogens, microbiome and the host: emergence of the ecological Koch’s postulates. FEMS Microbiol Rev. 2018;42(3):273–92. https://doi.org/10.1093/FEMSRE/FUY003.

    Article  CAS  PubMed  Google Scholar 

  9. Levy M, Kolodziejczyk A, Thaiss C, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017;17(4):219–32. https://doi.org/10.1038/NRI.2017.7.

    Article  CAS  PubMed  Google Scholar 

  10. Beutler B, Rietschel E. Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol. 2003;3(2):169–76. https://doi.org/10.1038/NRI1004.

    Article  CAS  PubMed  Google Scholar 

  11. Dolly O. Synaptic transmission: inhibition of neurotransmitter release by botulinum toxins. Headache. 2003;43(Suppl 1):16–24. https://doi.org/10.1046/J.1526-4610.43.7S.4.X.

    Article  Google Scholar 

  12. Janeway C, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216. https://doi.org/10.1146/ANNUREV.IMMUNOL.20.083001.084359.

    Article  CAS  PubMed  Google Scholar 

  13. Koropatnick T, Engle J, Apicella M, Stabb E, Goldman W, McFall-Ngai M. Microbial factor-mediated development in a host-bacterial mutualism. Science. 2004;306(5699):1186–8. https://doi.org/10.1126/SCIENCE.1102218.

    Article  CAS  PubMed  Google Scholar 

  14. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–45. https://doi.org/10.1016/J.CELL.2016.05.041.

    Article  CAS  PubMed  Google Scholar 

  15. Fischbach M, Segre J. Signaling in host-associated microbial communities. Cell. 2016;164(6):1288–300. https://doi.org/10.1016/J.CELL.2016.02.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mazmanian S, Liu C, Tzianabos A, Kasper D. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107–18. https://doi.org/10.1016/J.CELL.2005.05.007.

    Article  CAS  PubMed  Google Scholar 

  17. Hsiao E, McBride S, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–63. https://doi.org/10.1016/J.CELL.2013.11.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Erturk-Hasdemir D, Oh S, Okan N, et al. Symbionts exploit complex signaling to educate the immune system. Proc Natl Acad Sci U S A. 2019;116(52):26157–66. https://doi.org/10.1073/PNAS.1915978116.

    Article  CAS  PubMed Central  Google Scholar 

  19. Rudkin J, McLoughlin R, Preston A, Massey R. Bacterial toxins: offensive, defensive, or something else altogether? PLoS Pathog. 2017;13(9):e1006452. https://doi.org/10.1371/JOURNAL.PPAT.1006452.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nyholm S, McFall-Ngai M. A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat Rev Microbiol. 2021;19:666–79. https://doi.org/10.1038/S41579-021-00567-Y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Visick K, Stabb E, Ruby E. A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host. Nat Rev Microbiol. 2021;19(10):654–65. https://doi.org/10.1038/S41579-021-00557-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McFall-Ngai M. The importance of microbes in animal development: lessons from the squid-vibrio symbiosis. Annu Rev Microbiol. 2014;68:177–94. https://doi.org/10.1146/ANNUREV-MICRO-091313-103654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moriano-Gutierrez S, Koch E, Bussan H, et al. Critical symbiont signals drive both local and systemic changes in diel and developmental host gene expression. Proc Natl Acad Sci U S A. 2019;116(16):7990–9. https://doi.org/10.1073/PNAS.1819897116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koch E, Moriano-Gutierrez S, Ruby E, McFall-Ngai M, Liebeke M. The impact of persistent colonization by Vibrio fischeri on the metabolome of the host squid Euprymna scolopes. J Exp Biol. 2020;223(Pt 16):jeb212860. https://doi.org/10.1242/JEB.212860.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lemaitre B, Nicolas E, Michaut L, Reichhart J, Hoffmann J. The dorsoventral regulatory gene cassette spätzle/toll/cactus controls the potent antifungal response in drosophila adults. Cell. 1996;86(6):973–83. https://doi.org/10.1016/S0092-8674(00)80172-5.

    Article  CAS  PubMed  Google Scholar 

  26. Lemaitre B, Reichhart J, Hoffmann J. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci U S A. 1997;94(26):14614–9. https://doi.org/10.1073/PNAS.94.26.14614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Douglas A. The drosophila model for microbiome research. Lab Anim (NY). 2018;47(6):157–64. https://doi.org/10.1038/S41684-018-0065-0.

    Article  Google Scholar 

  28. Broderick N, Lemaitre B. Gut-associated microbes of Drosophila melanogaster. Gut Microbes. 2012;3(4):307–21. https://doi.org/10.4161/GMIC.19896.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chaston J, Dobson A, Newell P, Douglas A. Host genetic control of the microbiota mediates the drosophila nutritional phenotype. Appl Environ Microbiol. 2015;82(2):671–9. https://doi.org/10.1128/AEM.03301-15.

    Article  CAS  PubMed  Google Scholar 

  30. Dobson A, Chaston J, Newell P, et al. Host genetic determinants of microbiota-dependent nutrition revealed by genome-wide analysis of Drosophila melanogaster. Nat Commun. 2015;6:6312. https://doi.org/10.1038/NCOMMS7312.

    Article  CAS  PubMed  Google Scholar 

  31. Shin S, Kim S, You H, et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science. 2011;334(6056):670–4. https://doi.org/10.1126/SCIENCE.1212782.

    Article  CAS  PubMed  Google Scholar 

  32. Matos R, Schwarzer M, Gervais H, et al. D-Alanylation of teichoic acids contributes to lactobacillus plantarum-mediated drosophila growth during chronic undernutrition. Nat Microbiol. 2017;2(12):1635–47. https://doi.org/10.1038/S41564-017-0038-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zheng H, Steele M, Leonard S, Motta E, Moran N. Honey bees as models for gut microbiota research. Lab Anim (NY). 2018;47(11):317–25. https://doi.org/10.1038/S41684-018-0173-X.

    Article  Google Scholar 

  34. Kohno H, Kubo T. Genetics in the honey bee: achievements and prospects toward the functional analysis of molecular and neural mechanisms underlying social behaviors. Insects. 2019;10(10):348. https://doi.org/10.3390/INSECTS10100348.

    Article  PubMed Central  Google Scholar 

  35. Leonard S, Perutka J, Powell J, et al. Genetic engineering of bee gut microbiome bacteria with a toolkit for modular assembly of broad-host-range plasmids. ACS Synth Biol. 2018;7(5):1279–90. https://doi.org/10.1021/ACSSYNBIO.7B00399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Leonard S, Powell J, Perutka J, et al. Engineered symbionts activate honey bee immunity and limit pathogens. Science. 2020;367(6477):573–6. https://doi.org/10.1126/SCIENCE.AAX9039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miller D, Parish A, Newton I. Transitions and transmission: behavior and physiology as drivers of honey bee-associated microbial communities. Curr Opin Microbiol. 2019;50:1–7. https://doi.org/10.1016/J.MIB.2019.08.001.

    Article  PubMed  Google Scholar 

  38. Tarpy D, Mattila H, Newton I. Development of the honey bee gut microbiome throughout the queen-rearing process. Appl Environ Microbiol. 2015;81(9):3182–91. https://doi.org/10.1128/AEM.00307-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miller D, Smith E, Newton I. A bacterial symbiont protects honey bees from fungal disease. MBio. 2021;12(3):e0050321. https://doi.org/10.1128/MBIO.00503-21.

    Article  PubMed  Google Scholar 

  40. Zheng H, Powell J, Steele M, Dietrich C, Moran N. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc Natl Acad Sci U S A. 2017;114(18):4775–80. https://doi.org/10.1073/PNAS.1701819114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grunwald D, Eisen J. Headwaters of the zebrafish—emergence of a new model vertebrate. Nat Rev Genet. 2002;3(9):717–24. https://doi.org/10.1038/NRG892.

    Article  CAS  PubMed  Google Scholar 

  42. Stagaman K, Sharpton T, Guillemin K. Zebrafish microbiome studies make waves. Lab Anim (NY). 2020;49(7):201–7. https://doi.org/10.1038/S41684-020-0573-6.

    Article  Google Scholar 

  43. Roeselers G, Mittge E, Stephens W, et al. Evidence for a core gut microbiota in the zebrafish. ISME J. 2011;5(10):1595–608. https://doi.org/10.1038/ISMEJ.2011.38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stephens W, Burns A, Stagaman K, et al. The composition of the zebrafish intestinal microbial community varies across development. ISME J. 2016;10(3):644–54. https://doi.org/10.1038/ISMEJ.2015.140.

    Article  PubMed  Google Scholar 

  45. Wiles T, Wall E, Schlomann B, Hay E, Parthasarathy R, Guillemin K. Modernized tools for streamlined genetic manipulation and comparative study of wild and diverse proteobacterial lineages. MBio. 2018;9(5). https://doi.org/10.1128/MBIO.01877-18.

  46. Parthasarathy R. Monitoring microbial communities using light sheet fluorescence microscopy. Curr Opin Microbiol. 2018;43:31–7. https://doi.org/10.1016/J.MIB.2017.11.008.

    Article  CAS  PubMed  Google Scholar 

  47. Schlomann B, Wiles T, Wall E, Guillemin K, Parthasarathy R. Bacterial cohesion predicts spatial distribution in the larval zebrafish intestine. Biophys J. 2018;115(11):2271–7. https://doi.org/10.1016/J.BPJ.2018.10.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wiles T, Schlomann B, Wall E, Betancourt R, Parthasarathy R, Guillemin K. Swimming motility of a gut bacterial symbiont promotes resistance to intestinal expulsion and enhances inflammation. PLoS Biol. 2020;18(3):e3000661. https://doi.org/10.1371/JOURNAL.PBIO.3000661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Macpherson A, McCoy K. Standardised animal models of host microbial mutualism. Mucosal Immunol. 2015;8(3):476–86. https://doi.org/10.1038/MI.2014.113.

    Article  CAS  PubMed  Google Scholar 

  50. Hintze K, Cox J, Rompato G, et al. Broad scope method for creating humanized animal models for animal health and disease research through antibiotic treatment and human fecal transfer. Gut Microbes. 2014;5(2):183–91. https://doi.org/10.4161/GMIC.28403.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ridaura V, Faith J, Rey F, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214. https://doi.org/10.1126/SCIENCE.1241214.

    Article  PubMed  Google Scholar 

  52. Walter J, Armet A, Finlay B, Shanahan F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell. 2020;180(2):221–32. https://doi.org/10.1016/J.CELL.2019.12.025.

    Article  CAS  PubMed  Google Scholar 

  53. Jones TA, Guillemin K. Racing to stay put: how resident microbiota stimulate intestinal epithelial cell proliferation. Curr Pathobiol Rep. 2018;6(1):23–8. https://doi.org/10.1007/S40139-018-0163-0.

    Article  CAS  Google Scholar 

  54. Takashima S, Gold D, Hartenstein V. Stem cells and lineages of the intestine: a developmental and evolutionary perspective. Dev Genes Evol. 2013;223(1–2):85–102. https://doi.org/10.1007/S00427-012-0422-8.

    Article  PubMed  Google Scholar 

  55. Cheesman S, Neal J, Mittge E, Seredick B, Guillemin K. Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via Myd88. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4570–7. https://doi.org/10.1073/PNAS.1000072107.

    Article  CAS  PubMed  Google Scholar 

  56. Pull S, Doherty J, Mills J, Gordon J, Stappenbeck T. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc Natl Acad Sci U S A. 2005;102(1):99–104. https://doi.org/10.1073/PNAS.0405979102.

    Article  CAS  PubMed  Google Scholar 

  57. Koh A, Bäckhed F. From association to causality: the role of the gut microbiota and its functional products on host metabolism. Mol Cell. 2020;78(4):584–96. https://doi.org/10.1016/J.MOLCEL.2020.03.005.

    Article  CAS  PubMed  Google Scholar 

  58. Rawls J, Samuel B, Gordon J. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci U S A. 2004;101(13):4596–601. https://doi.org/10.1073/PNAS.0400706101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kuang Z, Wang Y, Li Y, et al. The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science. 2019;365(6460):1428–34. https://doi.org/10.1126/SCIENCE.AAW3134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Consuegra J, Grenier T, Baa-Puyoulet P, et al. Drosophila-associated bacteria differentially shape the nutritional requirements of their host during juvenile growth. PLoS Biol. 2020;18(3):e3000681. https://doi.org/10.1371/JOURNAL.PBIO.3000681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Johnson E, Heaver S, Waters J, et al. Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels. Nat Commun. 2020;11(1):2471. https://doi.org/10.1038/S41467-020-16274-W.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gnainsky Y, Zfanya N, Elgart M, et al. Systemic regulation of host energy and oogenesis by microbiome-derived mitochondrial coenzymes. Cell Rep. 2021;34(1):108583. https://doi.org/10.1016/J.CELREP.2020.108583.

    Article  CAS  PubMed  Google Scholar 

  63. Coley E, Hsiao E. Malnutrition and the microbiome as modifiers of early neurodevelopment. Trends Neurosci. 2021;44:753–64. https://doi.org/10.1016/J.TINS.2021.06.004.

    Article  CAS  PubMed  Google Scholar 

  64. Blanton L, Barratt M, Charbonneau M, Ahmed T, Gordon J. Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics. Science. 2016;352(6293):1533. https://doi.org/10.1126/SCIENCE.AAD9359.

    Article  CAS  PubMed  Google Scholar 

  65. Kamareddine L, Robins W, Berkey C, Mekalanos J, Watnick P. The drosophila immune deficiency pathway modulates Enteroendocrine function and host metabolism. Cell Metab. 2018;28(3):449–462.e5. https://doi.org/10.1016/J.CMET.2018.05.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hill J, Franzosa E, Huttenhower C, Guillemin K. A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development. Elife. 2016;5(December):18. https://doi.org/10.7554/ELIFE.20145.

    Article  Google Scholar 

  67. Troll J, Hamilton M, Abel M, et al. Microbiota promote secretory cell determination in the intestinal epithelium by modulating host notch signaling. Development. 2018;145(4):dev155317. https://doi.org/10.1242/DEV.155317.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mandić A, Woting A, Jaenicke T, et al. Clostridium ramosum regulates enterochromaffin cell development and serotonin release. Sci Rep. 2019;9(1):1177. https://doi.org/10.1038/S41598-018-38018-Z.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang H, Kwon Y, Dewan V, et al. TLR2 plays a pivotal role in mediating mucosal serotonin production in the gut. J Immunol. 2019;202(10):3041–52. https://doi.org/10.4049/JIMMUNOL.1801034.

    Article  CAS  PubMed  Google Scholar 

  70. Yano J, Yu K, Donaldson G, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–76. https://doi.org/10.1016/J.CELL.2015.02.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ye L, Mueller O, Bagwell J, Bagnat M, Liddle R, Rawls J. High fat diet induces microbiota-dependent silencing of enteroendocrine cells. Elife. 2019;8:e48479. https://doi.org/10.7554/ELIFE.48479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ryu J, Kim S, Lee H, et al. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in drosophila. Science. 2008;319(5864):777–82. https://doi.org/10.1126/SCIENCE.1149357.

    Article  CAS  PubMed  Google Scholar 

  73. Bates J, Akerlund J, Mittge E, Guillemin K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe. 2007;2(6):371–82. https://doi.org/10.1016/J.CHOM.2007.10.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ansaldo E, Farley T, Belkaid Y. Control of immunity by the microbiota. Annu Rev Immunol. 2021;39:449–79. https://doi.org/10.1146/ANNUREV-IMMUNOL-093019-112348.

    Article  CAS  PubMed  Google Scholar 

  75. Hotamisligil G. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542(7640):177–85. https://doi.org/10.1038/NATURE21363.

    Article  CAS  PubMed  Google Scholar 

  76. Beura L, Hamilton S, Bi K, et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature. 2016;532(7600):512–6. https://doi.org/10.1038/NATURE17655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hamilton S, Badovinac V, Beura L, et al. New insights into the immune system using dirty mice. J Immunol. 2020;205(1):3–11. https://doi.org/10.4049/JIMMUNOL.2000171.

    Article  CAS  PubMed  Google Scholar 

  78. Agirman G, Hsiao E. SnapShot: the microbiota-gut-brain axis. Cell. 2021;184(9):2524–2524.e1. https://doi.org/10.1016/J.CELL.2021.03.022.

    Article  CAS  PubMed  Google Scholar 

  79. Schretter C, Vielmetter J, Bartos I, et al. A gut microbial factor modulates locomotor behaviour in drosophila. Nature. 2018;563(7731):402–6. https://doi.org/10.1038/S41586-018-0634-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Phelps D, Brinkman N, Keely S, et al. Microbial colonization is required for normal neurobehavioral development in zebrafish. Sci Rep. 2017;7(1):11244. https://doi.org/10.1038/S41598-017-10517-5.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Vuong H, Yano J, Fung T, Hsiao E. The microbiome and host behavior. Annu Rev Neurosci. 2017;40:21–49. https://doi.org/10.1146/ANNUREV-NEURO-072116-031347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu W, Adame M, Liou C, et al. Microbiota regulate social behaviour via stress response neurons in the brain. Nature. 2021;595(7867):409–14. https://doi.org/10.1038/S41586-021-03669-Y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jameson K, Olson C, Kazmi S, Hsiao E. Toward understanding microbiome-neuronal signaling. Mol Cell. 2020;78(4):577–83. https://doi.org/10.1016/J.MOLCEL.2020.03.006.

    Article  CAS  PubMed  Google Scholar 

  84. Spichak S, Bastiaanssen T, Berding K, et al. Mining microbes for mental health: determining the role of microbial metabolic pathways in human brain health and disease. Neurosci Biobehav Rev. 2021;125:698–761. https://doi.org/10.1016/J.NEUBIOREV.2021.02.044.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank members of the Guillemin and Eisen labs for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Guillemin .

Editor information

Editors and Affiliations

Ethics declarations

For this article no studies with human participants or animals have been performed by the author.

Conflict of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walsh, K.T., Guillemin, K. (2022). The Impacts of Microbiota on Animal Development and Physiology. In: Rook, G.A.W., Lowry, C.A. (eds) Evolution, Biodiversity and a Reassessment of the Hygiene Hypothesis. Progress in Inflammation Research, vol 89. Springer, Cham. https://doi.org/10.1007/978-3-030-91051-8_6

Download citation

Publish with us

Policies and ethics